
Integrating XFree86 With Security-Enhanced Linux

Eamon F. Walsh
Information Assurance Research Group

National Security Agency
ewalsh@tycho.nsa.gov

http://www.nsa.gov/selinux

Abstract

The proposed paper will discuss work, currently in
progress, to add Security-Enhanced Linux policy sup-
port to the X Window System. The work consists of two
modifications to the XFree86 X server implementation.
The first modification is the replacement of the exist-
ing Security extension with a more general framework
of hook functions and security state. The second mod-
ification is a new SELinux extension which will extend
the enforcement of a kernel-based security policy to the
X server in userspace.

1 Introduction
The Security-Enhanced Linux project (SELinux) is an
effort to add mandatory access control to the Linux
kernel, providing a level of security beyond the ca-
pabilities of traditional, discretionary UNIX permis-
sions [8]. SELinux is built upon the Linux Security
Module (LSM), a framework of hook functions and se-
curity state fields designed to support arbitrary kernel
security modules [7]. The access control policy imple-
mented by SELinux is based on the Flask architecture, a
model which cleanly separates a security policy from its
enforcement mechanism [6].

SELinux has gone through several years of develop-
ment and, along with LSM, has been accepted into the
mainline Linux kernel source code. SELinux works by
labeling classes of kernel objects, such as processes, file
handles, sockets, and I-nodes, with security contexts. In
memory, security contexts are stored as LSM security
state. Files on disk are labeled with security contexts
using extended attributes, which are supported in recent
versions of the Linux kernel, the GNU C library, and
filesystems such as ext2 and ReiserFS.

Each security context contains the “type” or “domain”
of the object, which specifies the type of process the ob-
ject belongs to (for example, httpd t). SELinux se-
curity policy consists of rules specifying allowable in-
teraction between types. For example, a process with
type httpd t would be permitted to access files of type
http log file t, but not files of type passwd t
(such as /etc/passwd). Security contexts also con-

tain “user” and “role” fields, which can be used to further
restrict interactions between types based on expected us-
age patterns for different roles. For example, execution
of the telinit program can be restricted to processes
having the sysadm r role. Regular users (user r)
should not be able to run telinit.

A rich policy base has evolved, including specific
policy for a large number of Linux applications and
services [3]. Until now, however, SELinux has been
primarily kernel-based. The only userspace work has
been modifications to basic programs like ls, ps, and
login, allowing listing and querying of security state.

2 The Problem
Window-based graphical user interfaces are subject to
several security issues, among them, the need to ade-
quately protect access to window contents and the need
to securely label and identify the owner of each win-
dow [4]. Support for security policy allowing control
of such access and labeling is viewed as a necessity for
SELinux as Linux becomes more widely used on desk-
top systems.

Unfortunately, the X Window System, which pro-
vides window-based GUI functionality to UNIX and
GNU/Linux operating systems, is implemented in
userspace. The existing kernel-based SELinux imple-
mentation thus has no control over (or concept of) inter-
nal X objects such as windows, cursors, and color maps.
The X Protocol allows client applications to read pixmap
data from other windows, send events to other clients,
and capture keyboard and mouse input. Window titles
and icons are set by each individual client, making it
possible for one client to “spoof” a window belonging
to another [4].

The XFree86 X implementation currently has a “Se-
curity” extension, which provides a basic two-level trust
hierarchy and has some facilities for resource access
control, window content censoring, and auditing [1].
This extension is not widely used, however, and much
finer-grained control is needed for SELinux policy sup-
port. Each object in the X server must be labeled with a
security context, allowing, for example a Drawable ob-
ject belonging to a web browser to be labeled with type



Callback Name Basic Arguments Return Value
RESOURCE ACCESS client; resource client wishes to access Bool allow/deny
DEVICE ACCESS client; device client wishes to access (keyboard) Bool allow/ignore
PROPERTY ACCESS client; window; name of property Bool allow/ignore
DRAWABLE ACCESS client; drawable client wishes to access Bool allow/censor
EXT ACCESS client; extension client wishes to use Bool allow/ignore
HOST ACCESS client attempting to access the host control list Bool allow/deny
BACKGRND ACCESS client attempting to create window with no background Bool allow/censor
SITE POLICY check for site policy string (see [1]) Bool recognized/unrec
DECLARE EXT SECURE notification that extension has declared itself trusted void

Table 1: Callbacks available through the X Security Module.

browser t. Once this is done, policy can be written
governing interactions between X clients. For example,
the client corresponding to a screen capture application
may be permitted by the policy to access the window
contents of other clients. The client corresponding to a
calculator program would not receive this permission.

Providing SELinux policy support for windowing op-
erations requires a new mode of operation for SELinux:
userspace policy enforcement. The X server itself must
be modified to perform the appropriate labeling of inter-
nal objects and to consult the policy whenever an object
is accessed. Then, by having the X server cooperate with
the kernel to obtain the policy, the desired window sys-
tem security can be achieved.

3 A General Security Framework for X
The work now being done on the X Window system
closely follows the development of SELinux in the ker-
nel. Two modifications are being made to the XFree86 X
server implementation [5]. The first modification, tenta-
tively termed the “X Security Module,” will replace the
existing Security extension with a more general frame-
work of hook functions and security state. This work
is very similar to the LSM in the kernel, and will allow
the implementation of arbitrary, stackable security ex-
tensions for XFree86.

The Security extension has snippets of code through-
out the “device-independent architecture” layer of the
XFree86 X server implementation. These snippets catch
accesses to the X server’s resource table, input devices
(currently only the keyboard), and other X server exten-
sions [2]. Calls are made back into the Security exten-
sion to check the trust level of the client making the ac-
cess, and untrusted clients are denied access to untrusted
extensions and resources owned by trusted clients (the
trust level of each client and extension is stored in a field
of their respective structures).

The X Security Module will simply replace these code
snippets with more general hooks to callback lists (Ta-
ble 1), and will replace the Security extension fields in
the client and extension structures with a more general

mechanism for storing security state. This will allow ar-
bitrary security extensions (including a stub extension
implementing the original Security functionality) to be
written and loaded through the existing XFree86 module
loader. These extensions may register callback functions
for any hooks they wish to catch, and may obtain space
to store security state with each client and extension ob-
ject.

4 Kernel/Userspace Cooperation
The second modification to the XFree86 X server will
be an extension which will use the X Security Module to
add SELinux functionality. The extension will cooperate
with the Linux kernel to obtain current security policy
and will register callbacks with the security module to
enforce that policy. The security context of each client
will be stored in the client structure as security state and
will be used to restrict access, via policy, to all resources
belonging to clients (drawables, graphics contexts, etc.)
Additionally, the extension will provide a new X Proto-
col request that will allow window managers to obtain
an appropriate security label for each top-level window.

Since SELinux policy resides in the kernel, an X
server (or any userspace policy enforcer) must cooperate
with the kernel to ensure that the correct policy is being
enforced in userspace at all times. The SELinux kernel
module provides a filesystem interface, selinuxfs,
which is similar to the /proc filesystem exported by the
regular Linux kernel [9]. Using this interface, userspace
programs can obtain information, including policy deci-
sions, from the kernel.

A userspace policy decision cache has already been
implemented for use with the X server. This cache mir-
rors an existing kernelspace cache, and prevents the need
for a kernel trap on each and every userspace policy
query. However, the kernel must notify the X server
of policy change so that the cache can be flushed. The
filesystem interface is poorly suited for this purpose
since the X server must constantly poll a file handle to
be made aware of a change. Thus, part of the project
will add new messaging functionality to SELinux, per-



haps using process signals or a netlink socket to notify
userspace of policy changes. This work will be appli-
cable to all userspace policy enforcers, not just X Win-
dows.

5 Availability
The X Window System is a trademark of the Open
Group (http://www.opengroup.org).

The XFree86 project is an X Window System imple-
mentation, freely distributable in source form under the
X11 license (http://www.xfree86.org).

The Security-Enhanced Linux project (http://
www.nsa.gov/selinux) is freely distributable in
source form and is available in the stock 2.6-series Linux
kernel.

References
[1] Wiggins, David. “Security Extension Specifica-

tion: Version 7.1.” X Consortium, Inc. (1996).

[2] Wiggins, David. “Security Extension Server De-
sign (Draft Version 3.0).” X Consortium, Inc.
(1996).

[3] Smalley, S. “Configuring the SELinux Policy.”
NAI Labs Report #02-007 (2002). Available URL:
http://www.nsa.gov/selinux/docs.
html.

[4] Kilpatrick, D., Salamon, W., and Vance, C.
“Securing the X Window System with SELinux.”
NAI Labs Report #03-006 (2003). Available URL:
http://www.nsa.gov/selinux/docs.
html.

[5] The XFree86 Project. Available URL: http://
www.xfree86.org.

[6] Loscocco, P., Smalley, S., Muckelbauer, P., Taylor,
R., Turner, S., and Farrell, J. “The Flask Security
Architecture: System Support for Diverse Security
Policies” In Proc. 8th USENIX Conference (Secu-
rity Symposium) 1999.

[7] Smalley, S., Vance, C., and Salamon, W. “Imple-
menting SELinux as a Linux Security Module.”
NAI Labs Report #01-043 (2001). Available URL:
http://www.nsa.gov/selinux/docs.
html.

[8] Loscocco, P., and Smalley, S. “Integrating Flexible
Support for Security Policies into the Linux Oper-
ating System.” In Proc. 10th USENIX Conference
(FREENIX Track) 2001.

[9] Smalley, S. “NSA Security-Enhanced Linux
(SELinux).” Ottowa Linux Symposium presen-
tation (2003). Available URL: http://www.
nsa.gov/selinux/docs.html.


