
fonts-conf

Name
fonts.conf — Font configuration files

Synopsis

/etc/fonts/fonts.conf
/etc/fonts/fonts.dtd
/etc/fonts/conf.d
~/.fonts.conf

Description

Fontconfig is a library designed to provide system-wide font configuration, customization and
application access.

Functional Overview

Fontconfig contains two essential modules, the configuration module which builds an internal
configuration from XML files and the matching module which accepts font patterns and returns the
nearest matching font.

Font Configuration

The configuration module consists of the FcConfig datatype, libexpat and FcConfigParse which walks
over an XML tree and ammends a configuration with data found within. From an external perspective,
configuration of the library consists of generating a valid XML tree and feeding that to FcConfigParse.
The only other mechanism provided to applications for changing the running configuration is to add
fonts and directories to the list of application-provided font files.

The intent is to make font configurations relatively static, and shared by as many applications as possible.
It is hoped that this will lead to more stable font selection when passing names from one application to
another. XML was chosen as a configuration file format because it provides a format which is easy for
external agents to edit while retaining the correct structure and syntax.

Font configuration is separate from font matching; applications needing to do their own matching can
access the available fonts from the library and perform private matching. The intent is to permit
applications to pick and choose appropriate functionality from the library instead of forcing them to
choose between this library and a private configuration mechanism. The hope is that this will ensure that

1



fonts-conf

configuration of fonts for all applications can be centralized in one place. Centralizing font configuration
will simplify and regularize font installation and customization.

Font Properties

While font patterns may contain essentially any properties, there are some well known properties with
associated types. Fontconfig uses some of these properties for font matching and font completion. Others
are provided as a convenience for the applications rendering mechanism.

Property Type Description
--------------------------------------------------------------
family String Font family names
familylang String Languages cooresponding to each family
style String Font style. Overrides weight and slant
stylelang String Languages cooresponding to each style
fullname String Font full names (often includes style)
fullnamelang String Languages cooresponding to each fullname
slant Int Italic, oblique or roman
weight Int Light, medium, demibold, bold or black
size Double Point size
width Int Condensed, normal or expanded
aspect Double Stretches glyphs horizontally before hinting
pixelsize Double Pixel size
spacing Int Proportional, dual-width, monospace or charcell
foundry String Font foundry name
antialias Bool Whether glyphs can be antialiased
hinting Bool Whether the rasterizer should use hinting
hintstyle Int Automatic hinting style
verticallayout Bool Use vertical layout
autohint Bool Use autohinter instead of normal hinter
globaladvance Bool Use font global advance data
file String The filename holding the font
index Int The index of the font within the file
ftface FT_Face Use the specified FreeType face object
rasterizer String Which rasterizer is in use
outline Bool Whether the glyphs are outlines
scalable Bool Whether glyphs can be scaled
scale Double Scale factor for point->pixel conversions
dpi Double Target dots per inch
rgba Int unknown, rgb, bgr, vrgb, vbgr,

none - subpixel geometry
minspace Bool Eliminate leading from line spacing
charset CharSet Unicode chars encoded by the font
lang String List of RFC-3066-style languages this

font supports
fontversion Int Version number of the font
capability String List of layout capabilities in the font
embolden Bool Rasterizer should synthetically embolden the font

2



fonts-conf

Font Matching

Fontconfig performs matching by measuring the distance from a provided pattern to all of the available
fonts in the system. The closest matching font is selected. This ensures that a font will always be
returned, but doesn’t ensure that it is anything like the requested pattern.

Font matching starts with an application constructed pattern. The desired attributes of the resulting font
are collected together in a pattern. Each property of the pattern can contain one or more values; these are
listed in priority order; matches earlier in the list are considered "closer" than matches later in the list.

The initial pattern is modified by applying the list of editing instructions specific to patterns found in the
configuration; each consists of a match predicate and a set of editing operations. They are executed in the
order they appeared in the configuration. Each match causes the associated sequence of editing
operations to be applied.

After the pattern has been edited, a sequence of default substitutions are performed to canonicalize the
set of available properties; this avoids the need for the lower layers to constantly provide default values
for various font properties during rendering.

The canonical font pattern is finally matched against all available fonts. The distance from the pattern to
the font is measured for each of several properties: foundry, charset, family, lang, spacing, pixelsize,
style, slant, weight, antialias, rasterizer and outline. This list is in priority order -- results of comparing
earlier elements of this list weigh more heavily than later elements.

There is one special case to this rule; family names are split into two bindings; strong and weak. Strong
family names are given greater precedence in the match than lang elements while weak family names are
given lower precedence than lang elements. This permits the document language to drive font selection
when any document specified font is unavailable.

The pattern representing that font is augmented to include any properties found in the pattern but not
found in the font itself; this permits the application to pass rendering instructions or any other data
through the matching system. Finally, the list of editing instructions specific to fonts found in the
configuration are applied to the pattern. This modified pattern is returned to the application.

The return value contains sufficient information to locate and rasterize the font, including the file name,
pixel size and other rendering data. As none of the information involved pertains to the FreeType library,
applications are free to use any rasterization engine or even to take the identified font file and access it
directly.

The match/edit sequences in the configuration are performed in two passes because there are essentially
two different operations necessary -- the first is to modify how fonts are selected; aliasing families and
adding suitable defaults. The second is to modify how the selected fonts are rasterized. Those must apply
to the selected font, not the original pattern as false matches will often occur.

3



fonts-conf

Font Names

Fontconfig provides a textual representation for patterns that the library can both accept and generate.
The representation is in three parts, first a list of family names, second a list of point sizes and finally a
list of additional properties:

<families >- <point sizes >: <name1>=<values1 >: <name2>=<values2 >...

Values in a list are separated with commas. The name needn’t include either families or point sizes; they
can be elided. In addition, there are symbolic constants that simultaneously indicate both a name and a
value. Here are some examples:

Name Meaning
----------------------------------------------------------
Times-12 12 point Times Roman
Times-12:bold 12 point Times Bold
Courier:italic Courier Italic in the default size
Monospace:matrix=1 .1 0 1 The users preferred monospace font

with artificial obliquing

Lang Tags

Each font in the database contains a list of languages it supports. This is computed by comparing the
Unicode coverage of the font with the orthography of each language. Languages are tagged using an
RFC-3066 compatible naming and occur in two parts -- the ISO 639 language tag followed a hyphen and
then by the ISO 3166 country code. The hyphen and country code may be elided.

Fontconfig has orthographies for several languages built into the library. No provision has been made for
adding new ones aside from rebuilding the library. It currently supports 122 of the 139 languages named
in ISO 639-1, 141 of the languages with two-letter codes from ISO 639-2 and another 30 languages with
only three-letter codes. Languages with both two and three letter codes are provided with only the two
letter code.

For languages used in multiple territories with radically different character sets, fontconfig includes
per-territory orthographies. This includes Azerbaijani, Kurdish, Pashto, Tigrinya and Chinese.

Configuration File Format

Configuration files for fontconfig are stored in XML format; this format makes external configuration
tools easier to write and ensures that they will generate syntactically correct configuration files. As XML

4



fonts-conf

files are plain text, they can also be manipulated by the expert user using a text editor.

The fontconfig document type definition resides in the external entity "fonts.dtd"; this is normally stored
in the default font configuration directory (/etc/fonts). Each configuration file should contain the
following structure:

<?xml version="1.0"? >

<!DOCTYPE fontconfig SYSTEM "fonts.dtd" >

<fontconfig >

...
</fontconfig >

<fontconfig >

This is the top level element for a font configuration and can containdir , cache , include , match and
alias elements in any order.

dir

This element contains a directory name which will be scanned for font files to include in the set of
available fonts.

cache

This element contains a file name for the per-user cache of font information. If it starts with ’~’, it refers
to a file in the users home directory. This file is used to hold information about fonts that isn’t present in
the per-directory cache files. It is automatically maintained by the fontconfig library. The default for this
file is “~/.fonts.cache-version ”, whereversion is the font configuration file version number (currently
1).

include ignore_missing="no"

This element contains the name of an additional configuration file or directory. If a directory, every file
within that directory starting with a number will be processed in sorted order. When the XML datatype is
traversed by FcConfigParse, the contents of the file(s) will also be incorporated into the configuration by
passing the filename(s) to FcConfigLoadAndParse. If ’ignore_missing’ is set to "yes" instead of the
default "no", a missing file or directory will elicit no warning message from the library.

5



fonts-conf

config

This element provides a place to consolodate additional configuration information.config can contain
blank andrescan elements in any order.

blank

Fonts often include "broken" glyphs which appear in the encoding but are drawn as blanks on the screen.
Within theblank element, place each Unicode characters which is supposed to be blank in anint

element. Characters outside of this set which are drawn as blank will be elided from the set of characters
supported by the font.

rescan

Therescan element holds anint element which indicates the default interval between automatic
checks for font configuration changes. Fontconfig will validate all of the configuration files and
directories and automatically rebuild the internal datastructures when this interval passes.

selectfont

This element is used to black/white list fonts from being listed or matched against. It holds acceptfont
and rejectfont elements.

acceptfont

Fonts matched by an acceptfont element are "whitelisted"; such fonts are explicitly included in the set of
fonts used to resolve list and match requests; including them in this list protects them from being
"blacklisted" by a rejectfont element. Acceptfont elements include glob and pattern elements which are
used to match fonts.

rejectfont

Fonts matched by an rejectfont element are "blacklisted"; such fonts are excluded from the set of fonts
used to resolve list and match requests as if they didn’t exist in the system. Rejectfont elements include
glob and pattern elements which are used to match fonts.

6



fonts-conf

glob

Glob elements hold shell-style filename matching patterns (including ? and *) which match fonts based
on their complete pathnames. This can be used to exclude a set of directories
(/usr/share/fonts/uglyfont*), or particular font file types (*.pcf.gz), but the latter mechanism relies rather
heavily on filenaming conventions which can’t be relied upon.

pattern

Pattern elements perform list-style matching on incoming fonts; that is, they hold a list of elements and
associated values. If all of those elements have a matching value, then the pattern matches the font. This
can be used to select fonts based on attributes of the font (scalable, bold, etc), which is a more reliable
mechanism than using file extensions. Pattern elements include patelt elements.

patelt name="property"

Patelt elements hold a single pattern element and list of values. They must have a ’name’ attribute which
indicates the pattern element name. Patelt elements include int, double, string, matrix, bool, charset and
const elements.

match target="pattern"

This element holds first a (possibly empty) list oftest elements and then a (possibly empty) list of
edit elements. Patterns which match all of the tests are subjected to all the edits. If ’target’ is set to
"font" instead of the default "pattern", then this element applies to the font name resulting from a match
rather than a font pattern to be matched.

test qual="any" name="property" target="default" compare="eq"

This element contains a single value which is compared with the target (’pattern’, ’font’ or ’default’)
property "property" (substitute any of the property names seen above). ’compare’ can be one of "eq",
"not_eq", "less", "less_eq", "more", or "more_eq". ’qual’ may either be the default, "any", in which case
the match succeeds if any value associated with the property matches the test value, or "all", in which
case all of the values associated with the property must match the test value. When used in a<match
target="font"> element, the target= attribute in the<test> element selects between matching the
original pattern or the font. "default" selects whichever target the outer<match> element has selected.

7



fonts-conf

edit name="property" mode="assign" binding="weak"

This element contains a list of expression elements (any of the value or operator elements). The
expression elements are evaluated at run-time and modify the property "property". The modification
depends on whether "property" was matched by one of the associatedtest elements, if so, the
modification may affect the first matched value. Any values inserted into the property are given the
indicated binding ("strong", "weak" or "same") with "same" binding using the value from the matched
pattern element. ’mode’ is one of:

Mode With Match Without Match
---------------------------------------------------------------------
"assign" Replace matching value Replace all values
"assign_replace" Replace all values Replace all values
"prepend" Insert before matching Insert at head of list
"prepend_first" Insert at head of list Insert at head of list
"append" Append after matching Append at end of list
"append_last" Append at end of list Append at end of list

int , double , string , bool

These elements hold a single value of the indicated type.bool elements hold either true or false. An
important limitation exists in the parsing of floating point numbers -- fontconfig requires that the
mantissa start with a digit, not a decimal point, so insert a leading zero for purely fractional values (e.g.
use 0.5 instead of .5 and -0.5 instead of -.5).

matrix

This element holds the fourdouble elements of an affine transformation.

name

Holds a property name. Evaluates to the first value from the property of the font, not the pattern.

const

Holds the name of a constant; these are always integers and serve as symbolic names for common font
values:

Constant Property Value
-------------------------------------
thin weight 0

8



fonts-conf

extralight weight 40
ultralight weight 40
light weight 50
book weight 75
regular weight 80
normal weight 80
medium weight 100
demibold weight 180
semibold weight 180
bold weight 200
extrabold weight 205
black weight 210
heavy weight 210
roman slant 0
italic slant 100
oblique slant 110
ultracondensed width 50
extracondensed width 63
condensed width 75
semicondensed width 87
normal width 100
semiexpanded width 113
expanded width 125
extraexpanded width 150
ultraexpanded width 200
proportional spacing 0
dual spacing 90
mono spacing 100
charcell spacing 110
unknown rgba 0
rgb rgba 1
bgr rgba 2
vrgb rgba 3
vbgr rgba 4
none rgba 5
hintnone hintstyle 0
hintslight hintstyle 1
hintmedium hintstyle 2
hintfull hintstyle 3

or , and , plus , minus , times , divide

These elements perform the specified operation on a list of expression elements.or andand are boolean,
not bitwise.

9



fonts-conf

eq, not_eq , less , less_eq , more , more_eq

These elements compare two values, producing a boolean result.

not

Inverts the boolean sense of its one expression element

if

This element takes three expression elements; if the value of the first is true, it produces the value of the
second, otherwise it produces the value of the third.

alias

Alias elements provide a shorthand notation for the set of common match operations needed to substitute
one font family for another. They contain afamily element followed by optionalprefer , accept and
default elements. Fonts matching thefamily element are edited to prepend the list ofprefer ed
families before the matchingfamily , append theaccept able familys after the matchingfamily and
append thedefault families to the end of the family list.

family

Holds a single font family name

prefer , accept , default

These hold a list offamily elements to be used by thealias element./article

EXAMPLE CONFIGURATION FILE

System configuration file

This is an example of a system-wide configuration file

<?xml version="1.0"? >

<!DOCTYPE fontconfig SYSTEM "fonts.dtd" >

<!-- /etc/fonts/fonts.conf file to configure system font access -- >

10



fonts-conf

<fontconfig >

<!--
Find fonts in these directories
-- >

<dir >/usr/share/fonts </dir >

<dir >/usr/X11R6/lib/X11/fonts </dir >

<!--
Accept deprecated ’mono’ alias, replacing it with ’monospace’
-- >

<match target="pattern" >

<test qual="any" name="family" ><string >mono</string ></test >

<edit name="family" mode="assign" ><string >monospace </string ></edit >

</match >

<!--
Names not including any well known alias are given ’sans’
-- >

<match target="pattern" >

<test qual="all" name="family" mode="not_eq" >sans </test >

<test qual="all" name="family" mode="not_eq" >serif </test >

<test qual="all" name="family" mode="not_eq" >monospace </test >

<edit name="family" mode="append_last" ><string >sans </string ></edit >

</match >

<!--
Load per-user customization file, but don’t complain
if it doesn’t exist
-- >

<include ignore_missing="yes" >~/.fonts.conf </include >

<!--
Load local customization files, but don’t complain
if there aren’t any
-- >

<include ignore_missing="yes" >conf.d </include >

<include ignore_missing="yes" >local.conf </include >

<!--
Alias well known font names to available TrueType fonts.
These substitute TrueType faces for similar Type1
faces to improve screen appearance.
-- >

<alias >

<family >Times </family >

<prefer ><family >Times New Roman</family ></prefer >

<default ><family >serif </family ></default >

</alias >

<alias >

<family >Helvetica </family >

<prefer ><family >Arial </family ></prefer >

<default ><family >sans </family ></default >

</alias >

11



fonts-conf

<alias >

<family >Courier </family >

<prefer ><family >Courier New </family ></prefer >

<default ><family >monospace </family ></default >

</alias >

<!--
Provide required aliases for standard names
Do these after the users configuration file so that
any aliases there are used preferentially
-- >

<alias >

<family >serif </family >

<prefer ><family >Times New Roman</family ></prefer >

</alias >

<alias >

<family >sans </family >

<prefer ><family >Arial </family ></prefer >

</alias >

<alias >

<family >monospace </family >

<prefer ><family >Andale Mono </family ></prefer >

</alias >

</fontconfig >

User configuration file

This is an example of a per-user configuration file that lives in ~/.fonts.conf

<?xml version="1.0"? >

<!DOCTYPE fontconfig SYSTEM "fonts.dtd" >

<!-- ~/.fonts.conf for per-user font configuration -- >

<fontconfig >

<!--
Private font directory
-- >

<dir >~/.fonts </dir >

<!--
use rgb sub-pixel ordering to improve glyph appearance on
LCD screens. Changes affecting rendering, but not matching
should always use target="font".
-- >

<match target="font" >

<edit name="rgba" mode="assign" ><const >rgb </const ></edit >

</match >

</fontconfig >

12



fonts-conf

Files

fonts.confcontains configuration information for the fontconfig library consisting of directories to look
at for font information as well as instructions on editing program specified font patterns before
attempting to match the available fonts. It is in xml format.

conf.dis the conventional name for a directory of additional configuration files managed by external
applications or the local administrator. The filenames starting with decimal digits are sorted in
lexicographic order and used as additional configuration files. All of these files are in xml format. The
master fonts.conf file references this directory in an<include> directive.

fonts.dtdis a DTD that describes the format of the configuration files.

~/.fonts.confis the conventional location for per-user font configuration, although the actual location is
specified in the global fonts.conf file.

~/.fonts.cache-*is the conventional repository of font information that isn’t found in the per-directory
caches. This file is automatically maintained by fontconfig.

See Also

fc-cache(1), fc-match(1), fc-list(1)

Version

Fontconfig version 2.3.0

13


