
Xlib and X Protocol Test Suite
X Version 11 Release 6.1

Programmers Guide for the X Test Suite

July 1992

Copyright © 1991, 1992 UniSoft Group Limited

Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose is
hereby granted without fee, provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation, and that the name of
UniSoft not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission. UniSoft makes no representations about the suitability of this software for any
purpose. It is provided "as is" without express or implied warranty.

Programmers Guide for the X Test Suite

Programmers Guide for the X Test Suite

1. Introduction

This document is a Programmers Guide to the X Test Suite.

Instructions for installing and running the X Test Suite are contained in the document
"User Guide for the X Test Suite". It is not necessary to read the Programmers Guide in
order to install and run the test suite.

2. Purpose of this guide

The information in this section is designed to be used by a programmer intending to
review the source code in the revised X Test Suite. It is also intended to be used by an
experienced programmer, familiar with the X Window System, to modify or extend the
X Test Suite to add additional tests.

Before reading this document, it is necessary to read the document "User Guide for the
X Test Suite". This is because the nomenclature used in this document is explained in the
"User Guide". Appendix F of that document is a glossary, which explains the meaning of
some terms which may not be in common usage.

The directory structure used within the X Test Suite is described further in "Appendix A -
Contents of X Version 11 Release 6.1" in the "User Guide". You should be familiar with
that appendix before reading further.

3. Contents of this guide

The test set source files in the revised X Test Suite have been developed in the format of a
simple language, specially produced as part of the test suite development project. Files in
the test suite which use this language have the suffix ".m" and are known as dot-m files.

The syntax of this language is described in the next section of this document entitled
"Source file syntax".

During the stage one review of the development project, it was determined that there were
some advantages in methods of automatically generating source code for the tests from
templates. The dot-m file may be seen as a template for the tests. At the same time, it was
important that any utilities associated with the code generation should be commonly
available or provided within the test suite.

For this reason, a utility mc has been provided to convert dot-m files into C source code
and produce Makefiles automatically for the test set. The file formats which may be
produced are described in the section entitled "Source file formats". Summaries of usage
of the utilies are given in appendices D-F.

As part of the test suite development, a number of conventions were established to define
how the syntax of this language should be used in writing test sets. It is useful to
understand these conventions in order to understand the structure of the existing tests.
You are recommended to use the existing tests as a model, and follow the same structure
when modifying or extending the X Test Suite. This is described in the section entitled
"Source file structure".

The test set structure has deliberately been kept as simple as possible, and common
functions have been developed in libraries. The contents of these libraries is described in

- 1 -

Programmers Guide for the X Test Suite

the section entitled "Source file libraries".

3.1 Typographical conventions used in this document

The following conventions have been used in this document:

1. Items appearing in angle brackets <> should be substituted with a suitable value.

2. Items appearing in square brackets [] are optional.

- 2 -

Programmers Guide for the X Test Suite

4. Source file syntax

It is a design requirement that the test code for each test purpose has an associated
description of what is being tested (an assertion) and a description of the procedure used
to test it (a test strategy). All of these items are contained in dot-m files, and programs
are used to extract the relevant parts. The utilies developed for the purpose are outlined
in appendices D-F, and the format of the files they output is described in the section
entitled "Source file formats.

The format of a dot-m file consists of a number of sections introduced by keywords. The
sections of a dot-m file are as follows:

1. A copyright notice.

2. A section introduced by the >>TITLE keyword. This section defines the name of
the function being tested and its arguments.

The >>TITLE keyword, and the declaration and arguments which follows it, are
together known as the "title section".

3. Optionally, there may be a section introduced by the >>MAKE keyword. This
section defines additional rules for make beyond the default rules.

The >>MAKE keyword, and the text which follows it, are together known as a
"make section".

4. Optionally, there may be a section introduced by the >>CFILES keyword. This
section defines additional C source files source files that should be compiled and
linked (together with the C source files produced by mc) when building a test set.

5. Optionally, there may be a section introduced by the >>EXTERN keyword. This
section defines C source code which will be in scope for all test purposes in the
test set.

The >>EXTERN keyword, and the source code which follows it, are together
known as an "extern section".

6. For each test purpose in the test set, there will be a section introduced by an
>>ASSERTION keyword. These sections each contain the text of an assertion for
the function being tested.

The >>ASSERTION keyword, and the text which follows it, are together known
as an "assertion section".

7. An assertion section is normally followed by a section introduced by a
>>STRATEGY keyword, which is followed by the strategy. This is a description
of how the assertion is tested.

The >>STRATEGY keyword, and the strategy which follows it, are together
known as a "strategy section".

8. The strategy is always followed by a section introduced by a >>CODE keyword,
which is followed by a section of C source code which will test whether the
assertion is true or false on the system being tested.

The >>CODE keyword, and the C source code which follows it, are together
known as a "code section".

- 3 -

Programmers Guide for the X Test Suite

9. Optionally, the >>INCLUDE keyword includes, from a file, one or more of the
above sections, at that point in the dot-m file. It terminates the previous section.

The keywords introducing the sections are defined in detail below.

There are also optional keywords which may appear anywhere in a dot-m file:

1. The >>SET keyword sets options which apply in the dot-m file.

2. The >># keyword introduces a comment in a dot-m file.

The optional keywords are also defined in detail below.

4.1 Title section - >>TITLE

4.1.1 Description

>>TITLE <function> <section>

This keyword must be used at the start of a test purpose immediately after the copyright
message.

It may be followed by the declaration of the data type returned and the function
arguments. These lines may be omitted if XCALL is never used in any code section in
the test set.

1. The line after >>TITLE should specify the data type returned.

2. The next line should specify the function call with any arguments. This is no
longer mandatory, since the information is not used in the current version of mc.
So the second line may be left completely blank.

3. The following lines should specify the arguments and may set them to any
expression (not necessarily a constant expression). Usually arguments are set to
the return value of a function call, a global variable inserted by the mc utility, or a
global variable declared in an >>EXTERN section.

Static variables will be created to match these arguments, and will be reset as
specified automatically before the start of each test purpose, by the function
setargs() (described in the section entitled "Source file formats").

4.1.2 Arguments

function This is the name of the function in the X Window System to be tested. In
the X Protocol tests it should be the name of an X Protocol request or an
X event. In the Xlib tests it should be the name of an Xlib function or an
X event.

The XCALL macro will invoke the named function or macro (which
should be in Xlib) with the arguments specified on the lines following
>>TITLE.

section This is the section of the X Test Suite in which this particular test set is
stored. It should be the name of a directory in $TET_ROOT/tset. The
section name is used in formatting the assertions in the test set, and for
output to the journal file for reporting purposes. The section name does
not affect the building and execution of the tests.

- 4 -

Programmers Guide for the X Test Suite

4.2 Make section - >>MAKE

4.2.1 Description

>>MAKE

This keyword may be used anywhere in the dot-m file after the end of a section.

It should be followed by lines which will be copied into the Makefile by the mc utility,
when the Makefile is remade using the -m option.

The lines specified will be joined together and placed in order before the first rule in the
Makefile. In this way, the lines copied may contain both initialisation of Make variables,
and additional rules.

This keyword should be used sparingly, since the additional Makefile lines must be
consistent with the rest of the Makefile (see later section entitled "Makefile").

These lines are designed to allow auxiliary programs to be made by make (in addition to
the default target which is Test). For example, if test purposes in the test set execute
programs Test1 and Test2, which must also be built, the >>MAKE keyword can be
followed by lines which specify rules for building these executable programs. This can be
done as follows:

>>MAKE

AUXFILES=Test1 Test2

AUXCLEAN=Test1.o Test1 Test2.o Test2

all: Test

Test1 : Test1.o $(LIBS) $(TCMCHILD)

$(CC) $(LDFLAGS) -o $@ Test1.o $(TCMCHILD) $(LIBLOCAL) $(LIBS) $(SYSLIBS)

Test2 : Test2.o $(LIBS) $(TCMCHILD)

$(CC) $(LDFLAGS) -o $@ Test2.o $(TCMCHILD) $(LIBLOCAL) $(LIBS) $(SYSLIBS)

Notice that the default target Test is still made by the new default Make rule. Also,
notice that Test1 and Test2 are not dependencies for the all target. They are
dependencies for Test. (See the later section entitled "Makefile".)

4.3 Additional source files - >>CFILES

4.3.1 Description

>>CFILES <filename> ...

This keyword may be used anywhere in the dot-m file after the end of a section.

The list of files following the keyword are taken as the names of C source files that
should be compiled and linked (together with the C source files produced by mc) when
building a test set. This allows code to be split among several files.

The only effect is to alter the Makefile that is produced by mmkf.

- 5 -

Programmers Guide for the X Test Suite

4.4 Extern section - >>EXTERN

4.4.1 Description

>>EXTERN

This keyword may be used anywhere in the dot-m file after the end of a section.

It should be followed by lines of C source code which will be copied into the C source
file by the mc utility, when the C source code is remade.

These lines will be copied unaltered into the C source file before the source code for the
first test purpose.

This section is useful for including three types of source code:

1. static variables declarations which are used by a number of test purposes in the
test set.

2. static functions which are used by a number of test purposes in the test set.

3. header file inclusions which are needed in addition to the default header file
inclusions in the C source code.

4.5 Assertion section - >>ASSERTION

4.5.1 Description

>>ASSERTION <test-type> [<category> [<reason>]]

This keyword is used at the start of each test purpose.

It should be followed by the text of the assertion which is a description of what is tested
by this particular test purpose.

The text should not contain troff font change commands (or any other nroff/troff
commands). This is because the majority of nroff/troff commands will not be understood
by the ma utility. Howev er, various macros can be used to enable mapping of the format
of special text onto similar fonts to those used in the X Window System documentation.
These are described in appendix B.

The keyword xname in the assertion text will be replaced by mc with the name of the
function under test obtained from the >>TITLE keyword.

Unless the category argument specifies an extended assertion, or the test-type is
gc or def, the assertion text must be followed by the >>STRATEGY keyword, strategy
section, >>CODE keyword and code section. Refer to the description of the category
argument.

If the >>CODE keyword is missing, following the text of an assertion which is not an
extended assertion, the mc utility will insert code to produce a result code
UNREPORTED for this test purpose when the test set is executed.

4.5.2 Arguments

- 6 -

Programmers Guide for the X Test Suite

test-type

Good

This is a "good" test. The function under test is expected to give a
successful result.

By convention these assertions appear in the dot-m file before all
assertions with test-type Bad.

Bad

This is a "bad" test. The function under test is expected to give an
unsuccessful result under the conditions that the test imposes.

By convention these assertions appear in the dot-m file after all
assertions with test-type Good.

The assertion text for many of these assertions is included via the
.ER keyword, described below.

gc

The assertion text states which gc components affect the function
under test. In this case the remaining arguments are unused, and
mc inserts into the C source file a series of assertions, strategies
and test code corresponding to the gc components listed in the
assertion text via the macro

.M gc-comp ,

or

.M gc-comp .

The assertions, strategies and test code are included, from files in
the directory $TET_ROOT/xtest/lib/gc.

The .M macro is used, since the gc components correspond to
structure members in a gc structure.

def

The assertion text is tested in the test for another assertion. These
assertions are often definitions of terms, which cannot be tested in
isolation, hence the abbreviation "def". The remaining arguments
are unused, and mc inserts code into the C file to issue the result
code NOTINUSE, and issues a message stating that the assertion is
tested elsewhere.

category

This is the assertion category, modelled on the corresponding codes in the
document1 POSIX.3 entitled "Test Methods for Measuring Conformance
to POSIX". It is either A, B, C or D.

1. Obtainable from Publication Sales, IEEE Service Center, P.O. Box 1331, 445 Hoes Lane, Piscataway,
NJ 08854-1331, (201) 981-0060

- 7 -

Programmers Guide for the X Test Suite

If the assertion tests a conditional feature, it is categorised as type C or D,
otherwise it is categorised as type A or B.

If the assertion is classified as an "extended assertion" it is categorised as
type B or D. Otherwise it is categorised as type A or C and is known as a
"base assertion".

Base Assertion Extended Assertion
Required Feature A B

Conditional Feature C D

Tests are always required for base assertions. Tests are not required for
extended assertions, but should be provided if possible. Extended
assertions are used to describe features that may be difficult to test.

In some cases partial testing may be performed for extended assertions.
An example is that it may be possible to test that some specific common
faults are not present. In this the result code would be FAIL if an error is
detected, or UNTESTED if no failure is detected, but the assertion is still
not fully tested.

For this reason, the strategy and code sections are optional for extended
assertions. If they are not supplied, mc will automatically generate source
code to put out a result code UNTESTED, with a message which describes
the reason. If they are supplied, they will override the automatically
generated sections.

Since there is not yet an equivalent document to POSIX.3 for the
X Window System then these codes are subject to change. For example, an
assertion classified as an "extended assertion" (type B) might become a
"base assertion" (type A) if a test method is later identified.

The following table lists the allowed test result codes for each category.

Category Allowed Result Codes
A PASS, FAIL, UNRESOLVED
B PASS, FAIL, UNTESTED, UNRESOLVED
C PASS, FAIL, UNSUPPORTED, UNRESOLVED
D PASS, FAIL, UNSUPPORTED, UNTESTED, UNRESOLVED

reason

In the case of extended assertions (category B or D) a reason code must be
supplied. These are the same as in POSIX.3. A list of the reason codes,
and the corresponding text of the reason, are shown in appendix A.

4.6 Strategy section - >>STRATEGY

4.6.1 Description

>>STRATEGY

If the category of an assertion is A or C, this keyword must be used immediately after the

- 8 -

Programmers Guide for the X Test Suite

assertion section.

If the category of an assertion is B or D, this keyword may be optionally be used
immediately after the assertion section.

It should be followed by the strategy, which is a description of how the assertion is to be
tested.

The text of the strategy is in free format sentences. It may contain the xname keyword,
which is an abbreviation for the name of the function under test.

The use of the XCALL keyword in the strategy section as an abbreviation for "Call
xname" is discontinued, although in this release, some occurrences remain.

4.7 Code section - >>CODE

4.7.1 Description

>>CODE [<BadThing>]

This keyword must be used immediately after the strategy section.

It should be followed by the C source code which will test the assertion.

The C source code will be converted by mc into a format suitable for the use by the TET
API. The way in which this is done is described in the section entitled "Source file
formats".

A blank line must separate the declarations of automatic variables in the test function
from the first executable statement. There must be no other blank lines within these
declarations.

The utility mc also expands the XCALL macro to call the function under test, and to call
library functions, before and after the function under test, to install and deinstall error
handlers and flush pending requests to the X server. The way in which this is done is
described in the section entitled "Source file formats".

4.7.2 Arguments

BadThing

This is an optional argument to the >>CODE macro.

If it is omitted, the XCALL macro will cause code to be inserted to ensure
that the function under test produces no X Protocol error, and issues a
result code FAIL if an error is detected.

If it is set to the symbolic value of an X Window System error code, the
XCALL macro will cause code to be inserted to ensure that the function
under test produces that X Protocol error, and issues a result code FAIL if
the wrong error, or no error, is detected.

4.8 Included section - >>INCLUDE

4.8.1 Description

>>INCLUDE <filename>

- 9 -

Programmers Guide for the X Test Suite

This keyword includes the contents of filename, which must be a file containing one
or more sections in the dot-m file format, optionally containing a copyright header. The
sections in the included file should produce a valid dot-m file, if they were included
directly at the point of inclusion. The >>INCLUDE keyword terminates the preceding
section - it cannot be used in the middle of a section.

The included sections are processed at the point of inclusion when the C source code is
generated by the mc utility.

The >>INCLUDE keyword is usually used when including test purposes which are
common to more than one test set. The >>INCLUDE mechanism allows an entire test
purpose (including assertion, strategy and code sections) to be included.

The >>INCLUDE keyword should not be used for merely including common functions
called by a number of test purposes. If the functions are common to one dot-m file, they
should be placed in an extern section. If the functions are common to many test sets, they
should be placed in one of the X Test Suite libraries.

- 10 -

Programmers Guide for the X Test Suite

4.9 Included errors - .ER

4.9.1 Description

.ER [Bad]Access grab

.ER [Bad]Access colormap-free

.ER [Bad]Access colormap-store

.ER [Bad]Access acl

.ER [Bad]Access select

.ER [Bad]Alloc

.ER [Bad]Atom [val1] [val2] ... †

.ER [Bad]Color

.ER [Bad]Cursor [val1] [val2] ... †

.ER [Bad]Drawable [val1] [val2] ... †

.ER [Bad]Font bad-font

.ER [Bad]Font bad-fontable

.ER [Bad]GC

.ER [Bad]Match inputonly

.ER [Bad]Match gc-drawable-depth

.ER [Bad]Match gc-drawable-screen

.ER [Bad]Match wininputonly

.ER [Bad]Name font

.ER [Bad]Name colour

.ER [Bad]Pixmap [val1] [val2] ... †

.ER [Bad]Value <arg> [mask] <val1> [val2] ... ‡

.ER [Bad]Window [val1] [val2] ... †

† - these arguments are optional.

‡ - the <arg> and at least <val1> argument must be supplied. The mask argument, and additional
arguments, are optional.

Note - the Bad prefix is in each case optional.

This keyword causes mc to insert into the C source file the text of an assertion, and in
some cases default strategy and default test code to test for the generation of a particular
X Protocol error by an Xlib function.

In some cases there is no strategy and code in the included file, because only the assertion
is common - the strategy and code sections are specific to each test purpose, and must be
provided immediately after the .ER keyword.

The default strategy and code sections (if included) may be overridden by sections in the
dot-m file immediately after the .ER keyword.

Note that this keyword does not insert the >>ASSERTION keyword - this must appear on
the line before .ER is invoked. Thus the keyword does not include the entire assertion
section.

The assertion text, strategy and test code are included from files in the directory
$TET_ROOT/xtest/lib/error.

The names of these files, and the assertion text in each file, is shown in appendix C.

- 11 -

Programmers Guide for the X Test Suite

4.10 Set options - >>SET

4.10.1 Description

>>SET startup <func_startup>

>>SET cleanup <func_cleanup>

>>SET tpstartup <func_tpstartup>

>>SET tpcleanup <func_tpcleanup>

>>SET need-gc-flush

>>SET fail-return

>>SET fail-no-return

>>SET return-value <return_value>

>>SET no-error-status-check

>>SET macro [<macroname>]

>>SET begin-function

>>SET end-function

These options control how the mc utility converts the dot-m file into a C source file.

Except where specifically stated, they may appear anywhere in the dot-m file and apply
from that point on, unless reset by a further >>SET keyword with the same first
argument.

4.10.2 Arguments

startup
The name of the function called before all test purposes is to be set to
func_startup (rather than the default, startup()).

cleanup
The name of the function called after all test purposes is to be set to
func_cleanup (rather than the default, cleanup()).

tpstartup
The name of the function called before each test purpose is to be set to
func_tpstartup (rather than the default, tpstartup()).

tpcleanup
The name of the function called after each test purpose is to be set to
func_tpcleanup (rather than the default, tpcleanup()).

need-gc-flush
When the XCALL macro is expanded, code to call the X Test Suite library
function gcflush(display, gc) will be inserted after the code to call the
function under test.

fail-return
When the XCALL macro is expanded, code to end the test purpose will be
inserted where an error is reported (the default is to continue after an error
is reported).

fail-no-return
When the XCALL macro is expanded, no code to end the test purpose will
be inserted where an error is reported (this reverses the effect earlier using

- 12 -

Programmers Guide for the X Test Suite

>>SET fail-return).

return-value
When the XCALL macro is expanded, and the Xlib function call has
return type Status, and the return value of XCALL is not saved for
testing in the calling code, code will be inserted to report an error if the
function under test does not return <return_value>. (By default, when the
Xlib function call has return type Status, an error is reported for
assertions with test-type Good if the return value is zero, and for assertions
with test-type Bad if the return value is non-zero).

no-error-status-check
When the XCALL macro is expanded, the default code to check for X
Protocol errors will not be inserted. The test purpose can perform
alternative checking after invoking XCALL. This setting only applies up
to the end of the current section.

macro
There is a macro in an X Window System header file for which a test set
source file will be produced which uses identical test purposes to the
function under test. This is used to automatically generate test purposes for
the Display and Screen information macros, which are identical to those
for the corresponding Xlib functions.

The macro name is set to <macroname> - the default is the function
argument in the >>TITLE keyword, with the leading letter ‘X’ removed.

This option must be specified before the title section of the dot-m file.

Note - this option may not be used for macros which have no arguments.

begin-function
The name of an additional function called before each test purpose, after
tpstartup() and global function arguments are initialised.

end-function
The name of an additional function called after each test purpose, before
tpcleanup().

4.11 Comment lines - >>#

4.11.1 Description

>># <Comment text>

This keyword specifies a one line comment. These are not intended to replace code
comments in the code section - in fact the mc utility does not copy dot-m format
comments to the C source file. Comments in the dot-m file are used for higher level
comments rather than detailed comments. For example, comments are used to record the
history of the development of the dot-m file, to preserve previous versions of assertions
where necessary, and to draw attention to unresolved problem areas.

- 13 -

Programmers Guide for the X Test Suite

5. Source file formats

This section describes the output from various utilities which may be used to format the
contents of a dot-m file.

The code-maker utility mc builds C source files from a dot-m file. Appendix D gives a
usage summary.

The Makefile utility mmkf builds Makefiles from a dot-m file. Appendix E gives a usage
summary.

The assertion utility ma produces a list of assertions from a dot-m file. Appendix F gives
a usage summary.

Instructions for building and installing the mc utility are given in the "User Guide". When
the utility mc is built and installed, the utilities mmkf and ma, which are links to the same
program mc differing only in name, are automatically installed as well.

5.1 C files for standalone executable - Test.c

The command

mc -o Test.c stclpmsk.m

produces a C file named Test.c. This may be compiled to produce a standalone
executable file named Test. Instructions on building and executing the tests are given in
the "User Guide". The Test.c files are not provided as part of this release, but are built
automatically when building the X Test Suite.

The C file contains all of the interface code required to invoke the test purposes from the
TET and a description of the assertion being tested is placed as a comment above the code
for each test purpose to make it easy to understand what is being tested.

The remaining parts of this section describe the format of the Test.c files in more
detail. The descriptions are in the order in which the text is inserted into the Test.c file.

Some parts of the Test.c file are constructed by copying in template files specifically
written to work with mc. These files are all located in the directory
$TET_ROOT/xtest/lib/mc.

5.1.1 Copyright header

A copyright header is inserted as a C source comment block. This will contain lines
showing the SCCS versions of the dot-m file and any included files.

5.1.2 SYNOPSIS section

A synopsis defining the arguments of the function being tested is inserted as a C source
comment block. This is constructed from the lines following the >>TITLE keyword in
the dot-m file. It includes the data type returned and any arguments to the function.

The synopsis section is omitted if there are no lines following the the >>TITLE keyword.

For example:

- 14 -

Programmers Guide for the X Test Suite

/*

* SYNOPSIS:

* void

* XSetClipMask(display, gc, pixmap)

* Display *display;

* GC gc;

* Pixmap pixmap;

*/

5.1.3 Include files

For the Xlib tests, when the section argument to the >>TITLE keyword is other than
XPROTO, the contents of the file mcinclude.mc are then included.

In this release the contents of this file are as follows:

#include <stdlib.h>

#include "xtest.h"

#include "Xlib.h"

#include "Xutil.h"

#include "Xresource.h"

#include "tet_api.h"

#include "xtestlib.h"

#include "pixval.h"

For the X Protocol tests, when the section argument to the >>TITLE keyword is
XPROTO the contents of the file mcxpinc.mc are then included.

In this release the contents of this file are as follows:

#include <stdlib.h>

#include "xtest.h"

#include "tet_api.h"

5.1.4 External variables

For the Xlib tests, when the section argument to the >>TITLE keyword is other than
XPROTO, the contents of the file mcextern.mc are then included.

In this release the contents of this file are as follows:

extern Display *Dsp;

extern Window Win;

extern Window ErrdefWindow;

extern Drawable ErrdefDrawable;

extern GC ErrdefGC;

extern Colormap ErrdefColormap;

extern Pixmap ErrdefPixmap;

extern Atom ErrdefAtom;

extern Cursor ErrdefCursor;

extern Font ErrdefFont;

- 15 -

Programmers Guide for the X Test Suite

The external variables are defined in the file startup.c or (when linking a program
executed via tet_exec()) in the file ex_startup.c.

For the X Protocol tests, when the section argument to the >>TITLE keyword is
XPROTO the contents of the file mcxpext.mc are then included.

In this release this file is empty.

5.1.5 Test set symbol and name

A symbol is defined indicating the function under test.

For example:

#define T_XSetClipMask 1

You may use this in a #ifdef control line, to distinguish special cases for particular
functions in code sections of a dot-m file included via the >>INCLUDE keyword.

The global variable TestName is initialised to the name of the function under test,
which is the function argument given to the >>TITLE keyword.

For example:

char *TestName = "XSetClipMask";

You can use this within a code section of a dot-m file to obtain the name of the function
under test.

5.1.6 Definitions for arguments

Symbols are defined to correspond with any arguments to the function specified in the
>>TITLE keyword.

These correspond to the lines following the >>TITLE keyword in the dot-m file.

For example:

/*

* Defines for different argument types

*/

#define A_DISPLAY display

#define A_GC gc

#define A_PIXMAP pixmap

#define A_DRAWABLE pixmap

These are used by the code in various included files, to substitute a symbol representing a
particular argument type with the actual variable used as the argument by the function
under test.

5.1.7 Static variables

Static variables are defined to correspond with any arguments to the function specified
in the >>TITLE keyword.

These correspond to the lines following the >>TITLE keyword in the dot-m file.

- 16 -

Programmers Guide for the X Test Suite

For example:

/*

* Arguments to the XSetClipMask function

*/

static Display *display;

static GC gc;

static Pixmap pixmap;

These are the arguments that will be passed to the function under test when the XCALL
macro is expanded.

You can initialise these in a code section of a dot-m file as required prior to invoking the
macro XCALL.

These variables will be initialised at the start of each test purpose using the function
setargs() described below in the section entitled "Initialising arguments".

5.1.8 Test purpose number

You can use this within a code section of a dot-m file to obtain the number of the current
test purpose.

int tet_thistest;

5.1.9 Initialising arguments

A function setargs() is defined to initialise the arguments to the function under test.

Code to call this function is inserted at the start of each test purpose before the code you
put in the code section.

The arguments are initialised to have the value of the expression you specified in the title
section. This does not have to be a constant expression - for example, it my be a return
value of a function in a library or extern section. By default arguments are initialised to
zero values.

For example:

/*

* Called at the beginning of each test purpose to reset the

* arguments to their initial values

*/

static void

setargs()

{

display = Dsp;

gc = 0;

pixmap = 0;

}

5.1.10 Initialising arguments when test-type is Bad

A function seterrdef() is defined to initialise some of the arguments to the function
under test to values which are suitable for conducting the included error tests.

- 17 -

Programmers Guide for the X Test Suite

This is called in some of the included error tests to initialise the arguments to known
good values.

For example:

/*

* Set arguments to default values for error tests

*/

static void

seterrdef()

{

gc = ErrdefGC;

pixmap = ErrdefPixmap;

}

5.1.11 Code sections

The code sections in the dot-m file are converted into a sequence of functions named
tnnn(), where nnn is a three digit number which is filled with leading zeros if necessary,
the first code section being named t001(). This is known as a "test function".

Each of the test functions is preceded by the corresponding assertion for the test purpose,
in a C source code comment, labelled with the test purpose number.

Code to call the library function tpstartup() is inserted at the start of the test
function, immediately after any automatic variables declared in your code section. This
function performs initialisation required for each test purpose, including setting error
handlers to trap unexpected errors.

Code to call the automatically generated test-set specific function setargs() is then
inserted. This function is described further in the previous section entitled "Initialising
arguments".

The contents of your code section are then inserted.

The macro XCALL in a dot-m file is expanded to call the function under test with
arguments corresponding to the lines following the >>TITLE keyword.

For example:

XCALL;

is by default expanded to

startcall(display);

if (isdeleted())

return;

XSetClipMask(display, gc, pixmap);

endcall(display);

if (geterr() != Success) {

report("Got %s, Expecting Success", errorname(geterr()));

FAIL;

}

The stages in this expansion are as follows:

- 18 -

Programmers Guide for the X Test Suite

1. The library function startcall() is called to check for any outstanding
unexpected X protocol errors, which might have been generated, for example,
during the setup part of the test. A call to XSync() is made to achieve this.

2. The library function startcall() installs a test error handler in place of the
unexpected X protocol error handler.

3. The library function isdeleted() returns True if the test purpose has already
issued a result code UNRESOLVED due to an earlier call to delete(). (This
must be done after calling startcall() in case XSync() flushed an
unexpected X protocol error.)

4. The function under test is then called with the arguments listed in the title section.

5. The library function endcall() is called to check for any X protocol errors
caused by the function under test. A call to XSync() is made to achieve this.

6. The library function endcall() installs the unexpected X protocol error
handler.

7. The test error handler saves the number of the most recent X protocol error. It is
accessed by calling the function geterr() and the value is checked. The value
is expected to be Success by default, or BadThing if the code section was
introduced in the dot-m file by

>>CODE BadThing

If it is desirable to skip checking the error status at this point, the option

>>SET no-error-status-check

may be inserted in the dot-m file in the current code section before the XCALL.
This setting only applies up to the end of the current section.

5.1.12 TET initialisation code

The mc utility adds a reference to the function into an array of functions which can be
invoked via the TET API.

For example:

struct tet_testlist tet_testlist[] = {

t001, 1,

t002, 2,

t003, 3,

NULL, 0

};

Code to calculate the number of test purposes in the test set is inserted as follows:

int ntests = sizeof(tet_testlist)/sizeof(struct tet_testlist)-1;

Finally, the names of the startup and cleanup functions are used to initialise variables
used by the TET API. These functions are called before the first test purpose and after the
last test purpose. The functions called can be overridden using the options >>SET startup
and >>SET cleanup.

- 19 -

Programmers Guide for the X Test Suite

The default library functions perform initialisation including reading the TET
configuration variables and opening a default client.

Should you override the default startup and cleanup functions, you are recommended to
call startup() as the first line of your startup function and cleanup() as the last
line of your cleanup function.

void (*tet_startup)() = startup;

void (*tet_cleanup)() = cleanup;

5.2 C files for standalone executable in macro tests - MTest.c

When the dot-m file contains the line

>>SET macro

the command

mc -m -o MTest.c scrncnt.m

produces a C file named MTest.c. This may be compiled to produce a standalone
executable file named MTest. Instructions on building and executing the tests are given
in the "User Guide". The MTest.c files are not provided as part of this release, but are
built automatically when building the X Test Suite.

The file MTest.c is identical to the file Test.c except that a macro (which is expected
to be made visible by including the file Xlib.h) is tested instead of the Xlib function
named in the title section of the dot-m file.

The macro name is set to the <macroname> argument of the >>SET macro option - if
there is no >>SET macro option in the file, or no argument specified, the default is the
function argument in the >>TITLE keyword, with the leading letter ‘X’ removed.

5.3 C files for linked executable - link.c

The command

mc -l -o link.c stclpmsk.m

produces a C file named link.c. This is identical to the Test.c file with the
exception of the initialisation code which enables the source code to be compiled and
linked into a space-saving executable file. This is an executable file which may invoke
any of the test purposes in the various link.c files, thereby reducing the number of
executable files required, and saving space. The link.c files are not provided as part of
this release, but are built automatically when building the X Test Suite.

The remaining parts of this section describe the differences in format of the link.c and
Test.c files.

The differences are associated with the TET initialisation code being in a separate source
file named linktbl.c, rather than in the test set source file.

A linktbl.c file is provided for each section of the X Test Suite in each subdirectory
of $TET_ROOT/xtest/tset. This file contains a pointer to an array of linkinfo
structures, one for each test set in the section. Each linkinfo structure contains the
following items:

- 20 -

Programmers Guide for the X Test Suite

name a unique name for that test set (the name of the test set
directory).

testname the actual Xlib function tested by the test set.

ntests the number of test purposes in the test set.

testlist a pointer to the array of test functions constructed for that test
set from the contents of the link.c file.

localstartup a pointer to the startup function specific to that test set.

localcleanup a pointer to the cleanup function specific to that test set.

Later in this section there are example values of these structure members.

When the space-saving executable is executed, the TET initialisation code in the library
function linkstart.c determines which test set is required. This is done by matching
argv[0] with a name element in the array of linkinfo structures. The test functions
specified by the corresponding testlist element of the linkinfo structure are then
executed, preceded and followed by the corresponding startup and cleanup function
respectively.

5.3.1 Test set symbol and name

The global variable TestName is made static.

static char *TestName = "XSetClipMask";

5.3.2 Test purpose number

This is defined in linktbl.c, and is made available via the following code:

extern int tet_thistest;

5.3.3 TET initialisation code

The global variable tet_testlist is made static.

For example:

static struct tet_testlist tet_testlist[] = {

t001, 1,

t002, 2,

t003, 3,

NULL, 0

};

The global variable ntests is made static.

static int ntests = sizeof(tet_testlist)/sizeof(struct tet_testlist)-1;

The linkinfo structure specific to this test set is defined.

For example:

- 21 -

Programmers Guide for the X Test Suite

struct linkinfo EXStClpMsk = {

"stclpmsk",

"XSetClipMask",

&ntests,

tet_testlist,

0,

0,

};

The TET variables for the startup and cleanup functions are defined in linktbl.c, and
are made available via the following code:

extern void (*tet_startup)();

extern void (*tet_cleanup)();

5.4 C files for linked executable in macro tests - mlink.c

When the dot-m file contains the line

>>SET macro

the command

mc -m -l -o mlink.c scrncnt.m

produces a C file named mlink.c. The mlink.c files are not provided as part of this
release, but are built automatically when building the X Test Suite.

The file mlink.c is identical to the file link.c, except that a macro (which is
expected to be made visible by including the file Xlib.h) is tested instead of the Xlib
function named in the title section of the dot-m file.

The macro name is set to the <macroname> argument of the >>SET macro option - if
there is no >>SET macro option in the file, or no argument specified, the default is the
function argument in the >>TITLE keyword, with the leading letter ‘X’ removed.

5.5 Makefile

The command

mmkf -o Makefile scrncnt.m

produces a Makefile which can be used to build all the C source files described in the
previous sections and to build the test executables from the C files.

Further instructions appear in the "User Guide" in the section entitled "Building,
executing and reporting tests without using the TET".

The Makefiles produced by mc are portable in that they use symbolic names to describe
commands and parameters which may vary from system to system. The values of these
symbolic names are all obtained by a utility pmake from the build configuration file,
which is described in the "User Guide" in the section entitled "Configuring the X Test
Suite".

The targets in the Makefile which can be invoked by pmake are as follows:

- 22 -

Programmers Guide for the X Test Suite

pmake Test
Builds standalone executable version of the test set.

pmake Test.c
Builds Test.c using mc with the format described in the earlier section
entitled "C files for standalone executable - Test.c".

pmake MTest
Builds standalone executable version of the test set to test the macro
version of the function.

pmake MTest.c
Builds MTest.c using mc with the format described in the earlier section
entitled "C files for standalone executable - MTest.c".

pmake linkexec
Builds the object files and links which can be used to produce a linked
executable file. These targets are used when building space-saving
executables as described in the "User Guide".

pmake link.c
Builds link.c using mc with the format described in the earlier section
entitled "C files for linked executable - link.c".

pmake mlink.c
Builds mlink.c using mc with the format described in the earlier section
entitled "C files for linked executable - mlink.c".

pmake clean
This removes object files and temporary files from the test set directory.

pmake clobber
This removes object files and temporary files from the test set directory
and additionally removes all the source files which mc can remake.

The remaining parts of this section describe the format of the Makefiles in more detail.

Refer to the section entitled "Make section - >>MAKE" for examples of how the
variables AUXFILES and AUXCLEAN may be set.

5.5.1 Copyright header

A copyright header is inserted as a comment block. This will contain lines showing the
SCCS versions of the dot-m file and any included files.

5.5.2 Make variables

A series of make variables are initialised to represent the names of the source, object and
executable files.

- 23 -

Programmers Guide for the X Test Suite

SOURCES=scrncnt.m

CFILES=Test.c

OFILES=Test.o

MOFILES=MTest.o

LOFILES=link.o mlink.o

LINKOBJ=scrncnt.o

LINKEXEC=scrncnt

5.5.3 Targets for X Protocol tests

For the X Protocol tests, when the section argument to the >>TITLE keyword is
XPROTO the contents of the file mmxpinit.mc are then included.

This file initialises various make variables to specific values for the X Protocol tests.

In this release the contents of this file are as follows:

#

X Protocol tests.

#

CFLAGS - Compilation flags specific to the X Protocol tests.

#

CFLAGS=$(XP_CFLAGS)

SYSLIBS=$(XP_SYSLIBS)

LIBS=$(XP_LIBS)

LINTFLAGS - Flags for lint specific to the X Protocol tests.

#

LINTFLAGS=$(XP_LINTFLAGS)

LINTLIBS=$(XP_LINTLIBS)

5.5.4 Targets for standalone executable - Test

The contents of the file mmsa.mc are included. These are the targets to create the
standalone executable file Test.

#

Build a standalone version of the test case.

#

Test: $(OFILES) $(LIBS) $(TCM) $(AUXFILES)

$(CC) $(LDFLAGS) -o $@ $(OFILES) $(TCM) $(LIBLOCAL) $(LIBS) $(SYSLIBS)

Test.c: $(SOURCES)

$(CODEMAKER) -o Test.c $(SOURCES)

5.5.5 Targets for standalone executable - MTest

If the dot-m file contains the >>SET macro option, the contents of the file mmmsa.mc are
included. These are the targets to create the standalone executable file MTest for the

- 24 -

Programmers Guide for the X Test Suite

macro version of the specified Xlib function.

#

Build a standalone version of the test case using the macro version

of the function.

#

MTest: $(MOFILES) $(LIBS) $(TCM) $(AUXFILES)

$(CC) $(LDFLAGS) -o $@ $(MOFILES) $(TCM) $(LIBLOCAL) $(LIBS) $(SYSLIBS)

MTest.c: $(SOURCES)

$(CODEMAKER) -m -o MTest.c $(SOURCES)

5.5.6 Targets for linked executable

The contents of the file mmlink.mc are included. These are the targets to create object
files and links which can be used to produce a linked executable file. These targets are
used when building space-saving executables as described in the "User Guide".

#

A version of the test that can be combined together with

all the other tests to make one executable. This will save a

fair amount of disk space especially if the system does not

have shared libraries. Different names are used so that

there is no possibility of confusion.

#

link.c: $(SOURCES)

$(CODEMAKER) -l -o link.c $(SOURCES)

Link the objects into one large object.

#

$(LINKOBJ): $(LOFILES)

$(LD) $(LINKOBJOPTS) $(LOFILES) -o $(LINKOBJ)

Link the object file into the parent directory.

#

../$(LINKOBJ): $(LINKOBJ)

$(RM) ../$(LINKOBJ)

$(LN) $(LINKOBJ) ..

Make a link to the combined executable.

#

$(LINKEXEC): ../Tests

$(RM) $(LINKEXEC)

$(LN) ../Tests $(LINKEXEC)

../Tests: ../$(LINKOBJ)

linkexec:: $(LINKEXEC) $(AUXFILES) ;

- 25 -

Programmers Guide for the X Test Suite

5.5.7 Targets for linked executable - macro version

If the dot-m file contains the >>SET macro option, the contents of the file mmmlink.mc
are included. These are the targets to create object files and links for the macro version of
the specified Xlib function which can be used to produce a linked executable file. These
targets are used when building space-saving executables as described in the "User
Guide".

A version of the test that can be combined with all the other tests for

the macro version of the function.

#

mlink.c: $(SOURCES)

$(CODEMAKER) -m -l -o mlink.c $(SOURCES)

linkexec:: m$(LINKEXEC) $(AUXFILES) ;

m$(LINKEXEC): ../Tests

$(RM) m$(LINKEXEC)

$(LN) ../Tests m$(LINKEXEC)

5.5.8 Targets for libraries

For the Xlib tests, when the section argument to the >>TITLE keyword is other than
XPROTO, the contents of the file mmlib.mc are then included.

In this release the contents of this file are as follows:

#

This part of the makefile checks for the existance of the libraries

and creates them if necessary.

#

The xtestlib is made if it doesn’t exist

#

$(XTESTLIB):

cd $(XTESTROOT)/src/lib; $(TET_BUILD_TOOL) install

The fontlib is made if it doesn’t exist

#

$(XTESTFONTLIB):

cd $(XTESTROOT)/fonts; $(TET_BUILD_TOOL) install

For the X Protocol tests, when the section argument to the >>TITLE keyword is
XPROTO the contents of the file mmxplib.mc are then included. This file is identical to
mmlib.mc except for the following additional lines:

The X Protocol test library is made if it doesn’t exist

#

$(XSTLIB):

cd $(XTESTROOT)/src/libproto; $(TET_BUILD_TOOL) install

- 26 -

Programmers Guide for the X Test Suite

5.5.9 Targets for cleaning and linting

The contents of the file mmmisc.mc are then included.

This file includes a clean target to remove object files and temporary files, and a
clobber target which additionally removes all the source files which mc can remake.

There is also a LINT target which enables the C source files to be checked against lint
libraries specified in the build configuration file.

#

Miscellaneous housekeeping functions.

#

clean up object and junk files.

#

clean:

$(RM) Test $(OFILES) $(LOFILES) $(LINKOBJ) $(LINKEXEC) core\

MTest m$(LINKEXEC) $(MOFILES) CONFIG Makefile.bak $(AUXCLEAN)

clobber - clean up and remove remakable sources.

#

clobber: clean

$(RM) MTest.c Test.c mlink.c link.c Makefile

Lint makerules

#

lint: $(CFILES)

$(LINT) $(LINTFLAGS) $(CFILES) $(LINTTCM) $(LINTLIBS)

LINT:lint

5.5.10 Targets for building known good image files

The contents of the file mmpgen.mc are then included.

These include targets which enable the test set to be built so that it generates known good
image files.

These are not intended to be used outside the development environment at UniSoft.

- 27 -

Programmers Guide for the X Test Suite

#

Pixel generation makerules for generating the reference

known good image files.

#

PVOFILES=pvtest.o

pvgen: $(PVOFILES) $(PVLIBS) $(TCM)

$(CC) $(LDFLAGS) -o $@ $(PVOFILES) $(TCM) \

$(PVLIBS) $(SYSLIBS) $(SYSMATHLIB)

pvtest.o: pvtest.c

cc -c -DGENERATE_PIXMAPS $(CFLAGS) pvtest.c

pvtest.c: Test.c

$(RM) pvtest.c; \

$(LN) Test.c pvtest.c

5.5.11 Targets for included files

Rules are included to specify the dependency of the C source files on any included files.

For example:

Test.c link.c: $(XTESTLIBDIR)/error/EAll.mc

Test.c link.c: $(XTESTLIBDIR)/error/EGC.mc

Test.c link.c: $(XTESTLIBDIR)/error/EPix.mc

5.6 Formatting assertions

The command

ma -o stclpmsk.a -h -m stclpmsk.m

produces in the file stclpmsk.a a list of the assertions from the assertion sections of
the specified dot-m file. The assertions are output in nroff format. All macros used in the
assertion text can be obtained using the -h and -s options as described below.

The remaining parts of this section describe the output format in more detail.

5.6.1 Copyright header

A copyright header is output as an nroff comment block. This will contain lines showing
the SCCS versions of the dot-m file and any included files.

5.6.2 Macro definitions

If the -h option was specified, macros that are later used in the assertion text will be
output from the file maheader.mc.

5.6.3 Title

The line

- 28 -

Programmers Guide for the X Test Suite

.TH <function> <section>

is output, where <function> and <section> are obtained from the title section of
the dot-m file.

The default macro definition for .TH in maheader.mc causes the section and function
name to be printed at the top of each page.

5.6.4 Assertions

For each assertion section, the line

.TI <category> \" <function>-n

is output, where <category> is obtained from the second argument of the
>>ASSERTION keyword and <function> is obtained from the title section of the dot-
m file, and n is the number of the assertion in the test set.

This is followed by the assertion text in which xname is converted to <function>.
For example:

.TI A \" XSetClipMask-1

A call to

.F XSetClipMask

sets the

.M clip_mask

component of the specified GC to the value of the

.A pixmap

argument.

The other macros used in the assertion text to control font changes are described in
appendix B.

The default macro definition for .TH in maheader.mc causes the example assertion to
be printed as follows:

Assertion XSetClipMask-1(A).
A call to XSetClipMask sets the clip_mask component of the

specified GC to the value of the pixmap argument.

- 29 -

Programmers Guide for the X Test Suite

6. Source file structure

This section describes the C source coding style and conventions which which have been
used in the development of the revised X Test Suite. These conventions apply to the
structure of the code sections of the dot-m files, whose overall structure is defined in
previous sections of the Programmers Guide. In some cases (particularly in the structure
of the X Protocol tests) the style and conventions have been deleloped from the earlier T7
X Test Suite.

You are advised to study the contents of this section before attempting to modify or
extend the X Test Suite. The contents of this section will give you guidelines on how to
structure the test code so that it is easy to follow, giv es correct and reliable information
when the tests are executed, and is written as compactly as possible.

Libraries of common functions have been used and further developed in the revised
X Test Suite in order to keep the source code in the test sets as compact as possible. The
rest of this section describes recommendations on how particular library functions should
be used. It does not describe the contents of the libraries in detail. A complete list of
library contents is provided in the section entitled "Source file libraries".

During the development of the Xlib tests, a library of support functions has been
developed. This library includes functions for performing common operations required
when testing the X Window System, as well as performing common reporting operations.
This library includes a small number of functions developed for the Xlib tests within the
T7 X Test Suite. This library is known as the "X test suite library" in this document, and
the source of the library is in the directory $TET_ROOT/xtest/src/lib.

Calls to any function in this library may be made by any test set in the X Test Suite.

6.1 Structure of the Xlib tests

This section describes the structure of the code sections of the Xlib tests.

The Xlib tests are the tests for sections 2 to 10 of the X11R4 Xlib specifications. They
are stored in subdirectories of the directories CH02 to CH10 (which are to be found in the
directory $TET_ROOT/xtest/tset). There is a subdirectory for each Xlib function
containing a dot-m file which includes all the test purposes provided for that Xlib
function. The naming scheme which is used for these directories is described in appendix
B of the "User Guide".

6.1.1 Result code macros

It is good practice where possible to structure the test so that only one test result code is
assigned before the code section returns or ends.

The significance of the various test result codes that may be assigned are described more
fully in appendix D of the "User Guide".

The following macros may be used to assign the test result code. These macros call the
function tet_result() which is part of the TET API.

PASS
This assigns test result code PASS.

- 30 -

Programmers Guide for the X Test Suite

FAIL
This assigns test result code FAIL.

UNRESOLVED
This assigns test result code UNRESOLVED.

UNSUPPORTED
This assigns test result code UNSUPPORTED.

UNTESTED
This assigns test result code UNTESTED.

NOTINUSE
This assigns test result code NOTINUSE.

WARNING
This assigns test result code WARNING.

FIP
This assigns test result code FIP.

Note that there are two other test result codes which may not be assigned directly within a
test purpose.

The result code UNINITIATED will be assigned to a test purpose from within the TET
when the function tet_delete() has been called in an earlier test purpose or startup
function. This is useful to prevent initiation of later test purposes when it is not possible
to continue executing test purposes in the test set.

The result code NORESULT will be assigned to a test purpose from within the TET if the
test purpose is initiated but no result code has been output by the time control returns
from the test purpose to the TET.

The FAIL macro also increments a failure counter which is used to prevent a result code
being assigned in a later call to CHECKPASS (see below).

6.1.2 Result code functions

There are a series of convenience functions which output a particular test result code
preceded by a test information message of type REPORT. (See "Outputting test
information messages", below).

In each case the arguments are exactly like those for printf(3).

These are as follows:

untested()
This function may be used for an extended assertion to output the test
result code UNTESTED, preceded by a message.

unsupported()
This function may be used for a conditional assertion to output the test
result code UNSUPPORTED, preceded by a message.

notinuse()
This function may be used to output the test result code NOTINUSE,
preceded by a message.

- 31 -

Programmers Guide for the X Test Suite

delete()
This function may be used to output the test result code UNRESOLVED,
preceded by a message.

6.1.3 Assigning result codes

The code should be structured such that a PASS result code is only assigned if there is no
doubt that the assertion being tested has been determined to be positively true on the
system being tested. Absence of failure should not be taken as proof of success. For this
reason, there should if possible be just one place where a PASS result may be assigned,
whilst there may be many code paths which report other result codes.

The result code FAIL should not be called until the function under test has been called.

During execution of the test purpose, it may not be possible to setup the conditions for the
assertion to be conclusively tested. In this case the result code UNRESOLVED should be
assigned rather than FAIL.

For example:

>>CODE

if (setup()) {

delete("setup() failed; the test could not be completed");

return;

}

ret = XCALL;

if (ret == 0)

PASS;

else

fAIL;

6.1.4 Assigning result codes for extended assertions

Extended assertions are described in more detail as part of the >>ASSERTION keyword.

In some cases partial testing may be done for extended assertions. In this case, the result
code would be FAIL if an error is detected, or UNTESTED if no failure is detected but
the assertion is still not fully tested.

For example:

>>CODE

ret = XCALL;

if (ret == 0)

PASS;

else

untested("The assertion could not be completely tested");

- 32 -

Programmers Guide for the X Test Suite

6.1.5 Assigning result codes for conditional assertions

Conditional assertions are described in more detail as part of the >>ASSERTION
keyword.

It is usual to determine at the beginning of the test purpose whether the conditional
feature described in the assertion is supported.

For example:

>>CODE

if (!feature_supported) {

unsupported("The required feature is not supported");

return;

}

ret = XCALL;

if (ret == 0)

PASS;

else

FAIL;

6.1.6 Assigning result codes for multi-part tests

It is often the case that the test strategy for an assertion requires a number of separate
checks to be performed, all of which must pass before the test purpose can be assigned a
PASS result code.

In order to ensure that all relevant checks have been performed, a macro CHECK is
provided which increments a pass counter. At the end of the test, a further macro
CHECKPASS checks that the counter has reached the required value before assigning a
PASS result. (The expected value of the pass counter is normally a constant, but may be a
function of a loop counter if the test involves calling CHECK in a loop.)

The macro CHECK uses trace() to print the pass counter and line number in the TET
journal file. The format of the TET journal file is described further in appendix C of the
"User Guide".

CHECKPASS also ensures that the pass counter is not zero, and that the fail counter is
zero.

For example:

- 33 -

Programmers Guide for the X Test Suite

>>CODE

n_ret = -1;

ret = XCALL;

if (ret == 0)

CHECK;

else

FAIL;

if (n_ret == expected_number)

CHECK;

else

FAIL;

CHECKPASS(2);

In the case of extended assertions, the macro CHECKUNTESTED may be called, which
is identical to CHECKPASS, except that the final result code assigned will be
UNTESTED.

6.1.7 Outputting test information messages

Test information messages are normally output to describe the reason for any test result
codes which are other than PASS, and for other purposes, as described in this section.

Appendix D of the "User Guide" describes the four different categories of test
information messages which may appear in the TET journal file. This section describes
how these messages are output from the test purpose.

The functions described in this section call the function tet_infoline() which is
part of the TET API.

REPORT
A test information message with type REPORT is used to report the reason
for any test result code which is other than PASS. A warning message is
printed by the report writer rpt if a test information message of type
REPORT is giv en in a test purpose which produced a test result code
PASS.

This is output using the function report(), which takes arguments
exactly like those for printf(3).

CHECK
A test information message with type CHECK should not be output
directly - this should only be done via the CHECK macro.

TRACE
A test information message with type TRACE is used to describe the state
of the test being executed.

This is not output to the TET journal file if the execution configuration
parameter XT_OPTION_NO_TRACE is set to Yes.

- 34 -

Programmers Guide for the X Test Suite

This is output using the function trace(), which takes arguments
exactly like those for printf(3).

DEBUG
A test information message with type DEBUG is a debug message inserted
during the development of the test.

This is only output to the TET journal file if the value of the execution
configuration parameter XT_DEBUG is greater than or equal to the level
of the debug message.

This is output using the function debug(), which takes arguments
exactly like those for printf(3), except that the printf(3) arguments are
preceded by a single argument which is the debug level. The debug level
should be between 1 and 3.

For example:

>>CODE

debug(1, "about to call %s", TestName);

ret = XCALL;

if (ret == 0)

trace("%s returned %d", TestName, ret);

PASS;

} else {

report("%s returned %d instead of 0", TestName, ret);

FAIL;

}

6.1.8 Creating new test purposes

You can create new test purposes within an existing dot-m file using the guidelines in this
section.

It is expected that in doing this you will be primarily aiming to produce new test purposes
for a particular Xlib function. You should add the new test purpose to the dot-m file
containing the test purposes for that Xlib function.

6.1.8.1 Creating new sections in the dot-m file

You are advised to create an assertion section and strategy section at the end of the file,
using as a template one of the existing sections in the dot-m file.

You should then create a code section commencing with the >>CODE keyword. Since
there are many different styles of Xlib functions which may be tested, there are few
additional guidelines that can be given beyond those contained in earlier parts of this
guide.

6.1.8.2 Creating test purposes which use pixmap verification

If you have not done so yet, refer to the section entitled "Examining image files" in the
"User Guide". This explains some background to the pixmap verification scheme, and in
particular how to view image files produced when running the X Test Suite.

- 35 -

Programmers Guide for the X Test Suite

A number of test purposes supplied in the X Test Suite use a scheme known as pixmap
verification, to compare the image produced by the X server with a known good image
which is stored in a known good image file.

All the required known good image files for the test programs in the X Test Suite (as
supplied) have been created in advance. The known good image files for each test
program are supplied in the X Test Suite in the test set directory in which the dot-m file is
supplied. They are named annn.dat, where nnn is the number of the test purpose for
which the known good image file was generated.

The known good image files are generated as follows. The X Test Suite is compiled with
the additional compilation flag -DGENERATE_PIXMAPS, and linked with a
replacement Xlib which determines analytically the expected X server display contents at
any point. At the points where pixmap verification is going to be performed, the expected
image is instead written to a data file, which is the known good image file.

It is not possible to generate further known good image files in this way, because the
replacement Xlib is not part of the X Test Suite.

However, it is possible to write a server-specific image file containing the contents of the
X server display at points where pixmap verification is going to be performed. This may
be useful for the purposes of validation and regression testing against a known server.
This may be done by working through the following stages:

1. Create the test purpose with a call to the macro PIXCHECK at the point where
you want to validate the image displayed by the X server. Note that the macro
PIXCHECK calls the macros CHECK or FAIL depending on whether the image
displayed by the X server matches that in the image file. The code invoked by the
macro PIXCHECK(display, drawable) is as follows:

if (verifyimage(display, drawable, (struct area *)0))

CHECK;

else

FAIL;

The function verifyimage() is described in more detail in the section entitled
"Source file libraries".

2. Build and execute the test without using the TCC, (refer to the "User Guide") and
check that the newly created test purpose gives result code UNRESOLVED due to
the absence of a known good image file as follows:

pmake

pt

prp

3. Rerun the test, saving the image produced by the X server as follows:

pt -v XT_SAVE_SERVER_IMAGE=Yes

4. This should create a file named annn.sav, where nnn is the name of the newly
created test purpose. This is a server-specific image file. Rename this file to the
name used for known good image files as follows:

- 36 -

Programmers Guide for the X Test Suite

mv annn.sav annn.dat

5. Check that the process has worked by executing the test without using the TCC,
and enabling pixmap verification against the server-specific image file as follows:

pt

prp

The newly created test purpose should give a result code of PASS.

It is particularly important that new test purposes are added at the end of the file if an
earlier test purpose calls the macro PIXCHECK. This is because inserting a test purpose
before another test purpose will cause the later test purpose to be renumbered. As well as
causing unnecessary confusion in other ways, this will cause the later test purpose to now
look for the wrong known good image file.

6.2 Structure of the X Protocol tests

This section describes the structure of the code sections of the X Protocol tests.

The X Protocol tests are the touch tests for the X Protocol (version 11). They are stored
in subdirectories of the directory XPROTO (which is to be found in the directory
$TET_ROOT/xtest/tset). There is a subdirectory for each X Protocol request
containing a dot-m file which includes all the test purposes provided for that X Protocol
request. The naming scheme which is used for these directories is described in appendix
B of the "User Guide".

During the development of the X Protocol tests, extensive use has also been made of a
library of support functions developed in the earlier T7 X Test Suite. This library is
known as the "X Protocol library" in this document, and the source of the library is in the
directory $TET_ROOT/xtest/src/libproto.

Calls to any function in this library may be made by any of the X Protocol tests in the
X Test Suite.

6.2.1 Structure of the code sections

In the T7 release of the X Test Suite, each of the X Protocol tests consisted of a main()
function which called library functions to send an X Protocol request to the X server, and
checked for the correct response (reply, error or nothing).

In the revised X Test Suite, the test code originally in the main() function has been
moved to a function called tester() which is located in an >>EXTERN section in
each dot-m file, so that it can be called from each test purpose as described below. The
test function tester() is in turn called from a library function testfunc().

For example:

>>CODE

test_type = GOOD;

/* Call a library function to exercise the test code */

testfunc(tester);

- 37 -

Programmers Guide for the X Test Suite

By default, the library function testfunc() calls tester() for each byte
orientation. The test function tester() is called in a sub-process via the TET API
function tet_fork(), and returns the exit status of the test process to testfunc().

If required, the execution configuration parameter XT_DEBUG_BYTE_SEX may be set
to NATIVE, REVERSE, MSB or LSB to call tester() just once with the required byte
orientation.

Each client has a test type, which is initialised when the client is created. The test type
determines whether X Protocol requests sent by the client are to be good requests or
invalid requests (expecting an X Protocol error to be returned). The test type may be
modified during the lifetime of the client by invoking the macro Set_Test_Type().
In many tests, this is done by setting the test type to one of the following values before
calling Send_Req(), then setting it to GOOD immediately afterwards for subsequent
library calls:

GOOD
The request sent will be a known good X Protocol request (unless
otherwise modified in tester() before calling Send_Req()).

BAD_LENGTH
The request sent will have length field less than the minimum needed to
contain the request.

JUST_TOO_LONG
The request sent will have length field greater than the minimum needed to
contain the request (and, for requests where the length is used to determine
the number of fields in the request, the length is also not the minimum
length plus a multiple of the field size).

TOO_LONG
The request sent will have a length field which is greater than that
accepted by the X server under test.

BAD_IDCHOICE1
The request sent will have a resource ID that is already in use (it is the
responsibility of the function tester() to ensure the resource ID is in
use before calling Send_Req()).

BAD_IDCHOICE2
The request sent will have a resource ID that is out of range (it is the
responsibility of the function tester() to ensure the resource ID is out
of range before calling Send_Req()).

BAD_VALUE
The request sent will have an inv alid mask bit set (it is the responsibility of
the function tester() to ensure the mask field contains an invalid bit
before calling Send_Req()).

OPEN_DISPLAY
A special value used only in the test for OpenDisplay for testing the
connection setup protocol.

- 38 -

Programmers Guide for the X Test Suite

SETUP
The initial test type of a client, which will cause errors during test setup to
produce result code UNRESOLVED rather than FAIL.

6.2.2 Outputting test information and result code

Errors may be detected and reported both within the test function tester() and within
library functions. When an error is detected, the function Log_Err() should be called.
This increments an error count and uses report() to output a test information message
of type REPORT to the TET journal file.

If no error is detected, the function Log_Trace() may be called to record that the expected
response was received. This uses trace() to output a test information message of type
TRACE to the TET journal file.

You can also use the function Log_Debug() to output more detailed test information such
as the contents of request, reply and event structures. This uses debug() to output a test
information message of type DEBUG at level one to the TET journal file.

The function Exit() should be called at any point after an error has occurred, which
will assign a test result code FAIL and print the error count (or UNRESOLVED if the
error counter is zero). The exit status will be EXIT_FAIL in this case.

If tester() performs all checks and the results are correct, the function Exit_OK()
should be called. The exit status will be EXIT_SUCCESS in this case.

A result code of PASS is only assigned to a test purpose in the library function
testfunc() if all calls to tester() give exit status EXIT_SUCCESS. It should not
be assigned anywhere else.

6.2.3 Creating new test purposes

You can create new test purposes within an existing dot-m file using the guidelines in this
section.

It is expected that in doing this you will be primarily aiming to produce new test purposes
for a particular X Protocol request. You should add the new test purpose to the dot-m file
containing the test purposes for that X Protocol request.

6.2.3.1 Creating new sections in the dot-m file

You are advised to create an assertion section and strategy section at the end of the file,
using as a template one of the existing sections in the dot-m file.

You should then create a code section which passes a function my_test() you are
about to create to the library function testfunc().

For example:

>>CODE

test_type = GOOD;

/* Call a library function to exercise the test code */

testfunc(my_test);

- 39 -

Programmers Guide for the X Test Suite

6.2.3.2 Creating a new test function

You should create a function my_test() in an >>EXTERN section in the dot-m file
using the guidelines in this section.

A client is a connection to the X server under test. Each X Protocol request is sent from a
particular client. You can create a client numbered client using
Create_Client(client). Normally a single client is created, but it is possible to
create more than one client. This will be necessary when testing the effect on the server
of multiple clients.

The client data structure Xst_clients is used to store the information about each
client you have created. This includes resource ID’s and a display structure which is filled
in when the client is created. The client data structure is documented in more detail in the
header file in which it is defined ($TET_ROOT/xtest/include/Xstlib.h).

Next you will need to create a request structure. The function Make_Req(client,
req_type) should be called to create a request of a specified type req_type for a
specified client client and return a pointer to the request structure. The request
structure will be filled in with defaults which may be suitable for the test purpose you are
creating. The file MakeReq.c in the X Protocol library fills in the default values.

Should you want to change the defaults you can do this at any point between creating the
request structure and sending it to the X server. It may be modified by accessing the
structure members. The format of the request structures is exactly as defined in your X
Protocol header file (normally /usr/include/X11/Xproto.h). You can alter value
list items using the following functions:

Add_Masked_Value()

Del_Masked_Value()

Clear_Masked_Value()

Add_Counted_Value()

Clear_Counted_Value()

Add_Counted_Bytes()

When you have the request structure you wish to pass to the X server, call the function
Send_Req(client). This sends the request req from client client to the X
server, and handles byte swapping and request packing as necessary. If you wish the X
Protocol library to further modify the request structure to send an invalid protocol
request, set the test type of the client before calling Send_Req(client) using the
macro Set_Test_Type(client). The possible test types are listed in the earlier
section entitled "Structure of the code sections".

To check that the X server has reacted correctly to the request sent, you will need to call
the function Expect(). For convenience, a number of macros and functions have been
created to call Expect() depending on the outcome you are expecting. These are as
follows:

Expect_Event(client, event_type)
This expects an event of type event_type to be sent back from the X
server to client client.

- 40 -

Programmers Guide for the X Test Suite

Expect_Reply(client, req_type)
This expects a reply to the X Protocol request of type req_type to be
sent back from the X server to client client.

Expect_Error(client, error_type)
This expects an error of type error_type to be sent back from the X
server to client client.

Expect_BadLength(client)
This expects a BadLength error to be sent back from the X server to client
client.

Expect_BadIDChoice(client)
This expects a BadIDChoice error to be sent back from the X server to
client client.

Expect_Nothing(client)
This expects neither an error, event or reply to be sent back from the X
server to client client.

The Expect() function will check that the response from the X server is of the correct
type and has the correct length. It will be byte swapped and unpacked as necessary into
an event or reply structure, to which a pointer will be returned.

It is recommended that one of these functions be called immediately after sending an X
Protocol request to the X server. This causes any pending response from the X server to
be flushed out, and checked. This makes it easier to locate wrong responses from the X
server. This is effectively designing the test to run synchronously.

Once an error, event or reply has been returned, it can be examined directly.

Since the structures allocated for requests, replies and events are allocated dynamically, it
is wise to free the structure after use. this may be done using the functions
Free_Req(), Free_Reply() and Free_Event().

When the outcome of sending the X Protocol request has been assessed, you will want to
either report an error or output a trace message indicating that the expected response was
received. Refer to the earlier section entitled "Outputting test information and result
code".

You should end the test purpose if every part of the test purpose has succeeded by calling
Exit_OK(). This should only be done once, because it is the means of passing back to
the library function testfunc() the fact that the test purpose passed. If at an earlier
part of the test purpose an error occurs and it is desired to exit, call Exit().

6.2.3.3 Creating test purposes to test X Protocol extensions

The nature of the extension mechanism in X makes it difficult to just add support in the
switch statements throughout the X Protocol library to support protocol extensions.

The reason for this is that you do not know the value of the event types and reply types
until you have queried the X server.

For this reason, you are recommended to review the scope of the work that would be
required in modifying the supplied X Protocol library before attempting to test X
Protocol extensions. You can use the supplied X Protocol library as a framework, and

- 41 -

Programmers Guide for the X Test Suite

develop new versions of routines which handle events and replies.

- 42 -

Programmers Guide for the X Test Suite

7. Source file libraries

This sections lists the contents of the principal libraries of source files used by many tests
in the X Test Suite.

7.1 The X Test Suite library

A library of common subroutines for the X Test Suite has source in
$TET_ROOT/xtest/src/lib. This is built automatically when building tests in the
X Test Suite. Should it be required to build it separately for any reason run the command.

cd $TET_ROOT/xtest/src/lib

pmake install

The list of source files in this library, with a brief description of the contents of each file,
is as follows:

XTestExt.c
If XTESTEXTENSION is defined, this file contains routines to access the
XTEST extension in order to simulate device events and obtain information
on the cursor attributes of windows.

If XTESTEXTENSION is not defined, dummy routines are used instead.

If XTESTEXTENSION is not defined, client-side functions previously in
file XTestLib.c (now available in the XTEST extension library) are still
included. These are XTestDiscard() (to discard current request in request
buffer) and XTestSetGContextOfGC() and XTestSetVisualIDOfVisual()
(to set values in opaque Xlib data structures). These functions require
access to data structures now in the internal Xlib header file Xlibint.h.

badcmap.c
Create an invalid colourmap ID by creating a readonly colourmap of the
default visual type.

badfont.c
Return a bad font ID by loading a font and then unloading it.

badgc.c
Return a bad GC id on display disp by creating a GC and invalidating it
using the XTEST extension library function XTestSetGContextOfGC.

badpixm.c
Return a bad pixmap id on display disp by creating a pixmap and freeing
it.

badvis.c
Make a visual bad by using the XTEST extension library function
XTestSetVisualIDOfVisual.

badwin.c
Return a bad window id on display disp by creating a window and
destroying it.

bitcount.c
Handle bits in words.

- 43 -

Programmers Guide for the X Test Suite

block.c
Check whether process blocks when testing event handling functions.

buildtree.c
Build a tree of windows specified by a list which determines position, size
and parentage of each window.

checkarea.c
Check pixels inside and/or outside an area of a drawable are set to given
values.

checkev ent.c
Check two arbitrary events to see if they match, report an error if they
don’t.

checkfont.c
Check returned font characteristics, properties, text extents and widths
against those expected in the supplied test fonts.

checkgc.c
Check GC components against expected values.

checkimg.c
Check pixels inside and/or outside an area of an image are set to given
values.

checkpixel.c
Check specified pixels of a drawable are set to given values.

checktile.c
Check that an area of a drawable is filled with a specified tile.

config.c
Initialise the config structure by getting all the execution parameters.

crechild.c
Create a mapped child window for a parent window, and wait for the child
window to become viewable.

cursor.c
Routines for accessing cursor information. This includes convenience
functions for checking the cursor defined for a given window. These
routines call those in XTestExt.c to use the XTEST extension to access the
cursor information.

delete.c
Set the test result code for the current test purpose to UNRESOLVED.

devcntl.c
Routines for input device control. This includes convenience functions for
pressing keys and buttons and remembering those pressed. These routines
call those in XTestExt.c to use the XTEST extension to simulate the
required device events.

dset.c
Set every pixel in a drawable to a specified value.

- 44 -

Programmers Guide for the X Test Suite

dumpimage.c
Dump the contents of an image to a file.

environ.c
Contains a test suite specific version of putenv() (which may not be
available on POSIX.1 systems). This is required to set up the environment
before some calls to tet_exec().

err.c
Test error handler (installed when calling the function under test).
Unexpected error handler (installed at all other times). I/O error handler
(installed at all times). Obtain the error code and resource ID saved by the
test error handler.

ev ents.c
Handle the serial fields of incoming requests.

ex_startup.c
Generic startup routines required before executing the first test purpose
and after executing the last test purpose. The routines
exec_startup() and exec_cleanup() in this file should be called
at the start and end of the main() function of each program executed via
the TET function tet_exec().

exposechk.c
Check that either enough expose events were received to restore the
window, or that the window has been restored from backing store.

extenavail.c
If XTESTEXTENSION is defined, the function IsExtTestAvailable() returns
True if the server extension XTEST is available, otherwise it returns False.

If XTESTEXTENSION is not defined, the function IsExtTestAvailable()
always returns False.

gcflush.c
Flush the GC cache.

gcinclude.c
Functions which are called from the code included to test the correctness
of use of GC components by the drawing functions.

The only function included at present is setfuncpixel(), which finds
the first pixel set in a drawable (this will vary depending on the drawing
function).

getevent.c
Check if there are events on the queue and if so return the first one.

getsize.c
Get the size of a drawable. Just uses XGetGeometry but avoids all the
other information that you get with that.

gettime.c
Get the current server time. Use a property attached to the root window of
the display called XT_TIMESTAMP and replace it with 42 (32-bits). The

- 45 -

Programmers Guide for the X Test Suite

PropertyNotify event that is generated supplies the time stamp returned.

iponlywin.c
Create an input only window.

issuppvis.c
The function issuppvis() takes a visual class as argument and returns
true if such a class is supported by the server under test. This function
uses the XGetVisualInfo() function rather than the user-supplied
XT_VISUAL_CLASSES parameter.

The function visualsupported() takes a mask indicating a set of
visuals, and returns a mask indicating the subset that is supported. If the
mask is 0L then the mask shows all supported visuals.

The function resetsupvis() takes a mask indicating a set of visuals.
Subsequent calls to nextsupvis() will return the next supported visual
specified in the mask and increment a counter. The function nsupvis()
returns this counter.

linkstart.c
Define global variables used by the TET which are required when linking
test programs to produce a space-saving executable.

When the space-saving executable is executed, the TET initialisation code
in the library function linkstart.c determines which test set is
required. This is done by matching argv[0] with the name elements in
the array of linkinfo structures. The corresponding test functions
specified by the testlist element of the linkinfo structure are then
executed.

lookupname.c
Convert symbolic values from X Window System header files to
appropriate names.

makecolmap.c
Make a colourmap for the screen associated with the default root window.

makecur.c
Create a cursor that can be used within the test suite. The cursor is created
using XCreateFontCursor. The shape chosen can be controlled through
the configuration variable XT_FONTCURSOR_GOOD.

makegc.c
Make a GC suitable for use with the given drawable.

makeimg.c
Creates a general purpose image that can be used within the test suite. The
image is cleared to W_BG.

makepixm.c
Creates a general purpose pixmap that can be used within the test suite.
The pixmap is cleared to W_BG.

- 46 -

Programmers Guide for the X Test Suite

makeregion.c
Creates a general purpose region that can be used within the test suite.

makewin.c
Creates a general purpose windows that can be used within the test suite.

makewin2.c
Creates windows corresponding to a particular area.

maxsize.c
Obtain the number of cells in a colourmap.

nextvclass.c
Functions to cycle through all the visual classes that are supposed to
supported by the display/screen that is being tested. Note that these
functions are only used in the tests for XMatchVisualInfo and
XGetVisualInfo.

The function initvclass() initialises the visual class table. The
visual classes that are supported are supplied by the test suite user in the
variable XT_VISUAL_CLASSES, together with the depths at which they
are supported.

The function resetvclass() resets the visual class table. Subsequent
calls to nextvclass() obtain the next visual class and depth. The
function nvclass() returns the size of the visual class table.

nextvinf.c
Functions to cycle through all the visuals that are supported on the screen
under test. These functions use the XGetVisualInfo() function rather than
the user-supplied XT_VISUAL_CLASSES parameter. If the parameter
XT_DEBUG_VISUAL_IDS is set to a non-empty string, only the visuals
ID’s in the string are used.

The function resetvinf() obtains a list of all visuals supported for a
particular screen. Subsequent calls to nextvinf() obtain the next
visual. The function nvinf() returns the number of visuals.

nondpth1pix.c
Obtain a pixmap of depth other than 1 if such a pixmap is supported.

notmember.c
Returns a list of numbers that are not members of given list. (This is used
to test assertions of the form "When an argument is other than X or Y, then
a BadValue error occurs".

opendisp.c
Open a connection to the server under test.

openfonts.c
Open the xtest fonts, and place their ID’s in the fonts array.

pattern.c
Draw a pattern consisting of vertical bands on the specified drawable.

- 47 -

Programmers Guide for the X Test Suite

pfcount.c
Functions which may take arguments which are set to the pass and fail
counters in test set code created by mc. Calls to the pfcount functions
are inserted in order to use the counters at least once, and so prevent lint
reporting unwanted errors.

pointer.c
Routines to move the pointer, and determine if the pointer has been
moved.

regid.c
Routines are provided to register resources created during a test purpose.
Wherever possible, library functions register resources, and test purposes
may do so directly if desired. Registered resources are then destroyed at
the end of the test purpose.

report.c
Reporting functions, which output test information messages to the TET
journal file. These all use the TET reporting function
tet_infoline().

rpt.c
Reporting functions, which output test information messages to the TET
journal file, and additionally assign a test result code. These all use the
TET reporting function tet_infoline().

savimage.c
The function savimage() returns a pointer to a saved image on a
drawable using XGetImage.

The function compsavimage() checks that the image currently on the
drawable matches a saved image.

The function diffsavimage() checks that the image currently on the
drawable differs from a saved image.

These functions are used where the precise pixels drawn cannot be
determined in advance, but the test result may still be infered by image
comparisons.

setline.c
Convenience functions to set line width, cap style, line style and join style
in a GC, using XChangeGC().

settimeout.c
The function settimeout() sets a timeout which causes the process to
exit after a timeout. This should be done only in a child process of a test
purpose created by tet_fork().

The function cleartimeout() clears a previously set timeout.

stackorder.c
The function stackorder() uses XQueryTree() to determine the
position of a window in the stacking order.

- 48 -

Programmers Guide for the X Test Suite

startcall.c
The function startcall() checks for any outstanding unexpected X
protocol errors, which might have been generated, for example, during the
setup part of the test. A call to XSync() is made to achieve this.

The function startcall() installs a test error handler in place of the
unexpected X protocol error handler.

The function endcall() checks for any X protocol errors caused by the
function under test. A call to XSync() is made to achieve this.

The function endcall() installs the unexpected X protocol error
handler.

startup.c
Generic startup routines called by TET before executing the first test
purpose and after executing the last test purpose.

tpstartup.c
Generic startup routines called by TET before executing each test purpose
and after executing each test purpose.

verimage.c
The function verifyimage() uses XGetImage() to obtain the
contents of the specified drawable. This is then compared with the
contents of a "known good image file". If there is a discrepancy, the image
produced by the server is dumped to a file using dumpimage() together
with the known good image. The image produced by the server and the
known good image may be examined as described in the section in the
"User Guide" entitled "Examining image files".

If the execution configuration parameter XT_DEBUG_NO_PIXCHECK is
set to Yes, the image checking is skipped in verifyimage().

If the execution configuration parameter XT_SAVE_SERVER_IMAGE is set
to Yes, the image produced by the server is dumped to a file using
dumpimage() (regardless of whether it matches the "known good image
file").

For more background on pixmap verification see the earlier section
entitled "Creating test purposes which use pixmap verification".

winh.c
Build a tree of windows to test event generation, propogation and delivery.

xthost.c
Specifies operating system dependent data used by the access control list
functions. This includes arrays of XHostAddress structures. These
should be checked and if necessary edited refering to the section in the
"User Guide" entitled "System dependent source files".

xtestlib.h
This file contains definitions which are common to many of the source
files in the X Test Suite library, and it is included in those source files.

- 49 -

Programmers Guide for the X Test Suite

xtlibproto.h
This file contains declarations and (if required by an ANSI Standard-C
compiler) function prototypes for all the functions in the source files in the
X Test Suite library.

7.2 The X Protocol library

A library of common subroutines for the X Protocol tests in the X Test Suite has source
in $TET_ROOT/xtest/src/libproto. This is built automatically when building
tests in the X Test Suite. Should it be required to build it separately for any reason run
the command.

cd $TET_ROOT/xtest/src/libproto

pmake install

The list of source files in this library, with a brief description of the contents of each file,
is as follows:

ClientMng.c
Having established a client connection to the X server using the functions
in ConnectMng.c, allocate a client data structure and fill in its display
structure.

ConnectMng.c
Establish a client connection to the X server.

DataMove.c
Convert individual fields into format for sending to the X server.

DfltVals.c
Obtain reasonable default values for contents of request structures.

Expect.c
Check for the expected response (error, event, reply, or nothing) from the
X server.

JustALink.c
This file is a link to one of the files XlibXtst.c, XlibOpaque.c, or
XlibNoXtst.c. The link is created when the X Protocol library is built, and
the file used depends on the configuration parameter XP_OPEN_DIS.

Log.c
Log test results.

MakeReq.c
Construct a request structure using the functions in DfltVals.c, which has
reasonable default values so that it may be immediately sent to the X
server using the functions in SendReq.c.

RcvErr.c

RcvEvt.c

RcvRep.c
Unpack the response from the server into a structure (RcvErr.c for errors,
RcvEvt.c for events, RcvRep.c for replies; these all use DataMove.c to do
the unpacking).

- 50 -

Programmers Guide for the X Test Suite

ResMng.c
Create a resource (e.g. atom, window) and store its resource ID in the
client data structure.

SendEvt.c
Pack an event structure into a request structure (only used by SendEvent
protocol request).

SendReq.c
Pack a request structure in correct format using the functions in
DataMove.c and send to the X server.

SendSup.c
Support routines for packing request structure.

ShowErr.c

ShowEvt.c

ShowRep.c

ShowReq.c

ShowSup.c
Display contents of structures in nice human-readable form (ShowErr.c for
errors, ShowEvt.c for events, ShowRep.c for replies, and ShowReq.c for
requests, all of which call ShowSup.c support routines).

TestMng.c
Manage the setup and closedown of the tests. This file includes definitions
and initialisation of global variables (including TET configuration
variables) and assigning test result codes.

TestSup.c
Support routines for handling mapping state and event masks of windows.

Timer.c
Set up a timer that will execute a certain routine on completion.

Utils.c
Utilities for isolating operating system dependencies.

Validate.c
Routines to check whether the server under test supports the feature being
tested (eg. writable colour cells).

ValListMng.c
Modify the value lists at the ends of request structures.

XlibNoXtst.c
This file contains functions which emulate the post R5 enhanced
connection setup scheme. A connection can be established in client native
or byte-swapped orientations, and (when testing XOpenDisplay) both
valid and invalid byte orderings may be sent to the X server. The
connection is made using operating system specific procedures which
were developed in 4.2BSD environment, and may need modifications to
work on other systems.

- 51 -

Programmers Guide for the X Test Suite

XlibOpaque.c
This file contains portable functions to handle connection setup where the
Xlib implementation does not support the post R5 enhanced connection
setup scheme. The Xlib functions XOpenDisplay and ConnectionNumber
are called here to obtain a connection using the client native byte
orientation, and subsequent X Protocol requests are made using this
connection.

XlibXtst.c
This file contains portable functions to handle connection setup where the
Xlib implementation supports the post R5 enhanced connection setup
scheme. The enhancement involves using additional parameters to the
Xlib function _XConnectDisplay() which allow a byte swapped
connection to be established. Details of operating system specific
connection setup procedures including networking are thus not needed in
the X Protocol library.

XstIO.c
Routines to handle protocol packet transmission and reception including
fatal I/O errors.

delete.c
Set the test result code for the current test purpose to UNRESOLVED.

linkstart.c
Define global variables used by the TET which are required when linking
test programs to produce a space-saving executable.

When the space-saving executable is executed, the TET initialisation code
in the library function linkstart.c determines which test set is
required. This is done by matching argv[0] with the name elements in
the array of linkinfo structures. The corresponding test functions
specified by the testlist element of the linkinfo structure are then
executed.

startup.c
Generic startup routines called by TET before executing the first test
purpose.

tpstartup.c
Generic startup routines called by TET before executing each test purpose.

DataMove.h
This file contains the macros for byte swapping and word alignment.

XstlibInt.h
This file contains definitions which are common to many of the source
files in the X Protocol library, and it is included in those source files.

XstosInt.h
This file contains definitions related to operating system functions which
are common to many of the source files in the X Protocol library, and it is
included in those source files.

- 52 -

Programmers Guide for the X Test Suite

7.3 The X test fonts library

A library of common subroutines defining the characteristics of the test fonts for the
X Test Suite has source in $TET_ROOT/xtest/fonts. This is built automatically
when building tests in the X Test Suite. Should it be required to build it separately for
any reason run the command.

cd $TET_ROOT/xtest/fonts

pmake install

The source files xtfont0.c to xtfont6.c contain definitions of XFontStruct
structures named xtfont0 to xtfont6 which define the characteristics of the test
fonts used by many of the text drawing functions.

- 53 -

Programmers Guide for the X Test Suite

8. Appendix A - reason codes for extended assertions

The reason code is a number between 1 and 6 (currently) and is used if and only if the
category is B or D. This number corresponds to a reason from the following table which
is coded into mc.

The text of the reason will be printed with a result code UNTESTED if there is no
>>CODE.

1 - "There is no known portable test method for this assertion",
2 - "The statement in the X11 specification is not specific enough to write a test",
3 - "There is no known reliable test method for this assertion",
4 - "Testing the assertion would require setup procedures that involve an unreasonable
amount of effort by the user of the test suite.",
5 - "Testing the assertion would require an unreasonable amount of time or resources on
most systems",
6 - "Creating a test would require an unreasonable amount of test development time."

- 54 -

Programmers Guide for the X Test Suite

9. Appendix B - commands for fonts and symbols in assertions

In the text of assertions there should be no in-line nroff font changes. This is because the
font names may need to be changed on some systems.

As an alternative, a number of macros have been defined which are understood by the
utilities developed during stage two of the project. The definition of these macros uses
appropriate fonts to correspond closely with those used by the X Window System
documentation.

1. Arguments to a function should be written:

.A window

2. Function names should be written:

.F XAllocColorCells

(When the special symbol xname is used it can be left as it is, so the .F form only
needs using when refering to some other function. We hav e avoided cross
references to other functions where possible).

3. Structure members should be written:

.M override_redirect

4. Symbols should be written:

.S InputOutput

This is used for everything that is in the courier font in the X Window System
documentation and which is not a function name or structure member. This
includes the #define constants in the headers and typedef’ed names.

Eg.

BadColor

IsViewable

DirectColor

Visual

Display

MotionNotifyEvent

Punctuation separated by white space from the argument will be in the original font, as in
mm.

.A InputOutput ,

.A InputOnly .

— There is a .SM macro, as in mm. Any word that is uppercase only should use it to
obtain a reduced point size.

.SM DEBUG

.SM MIT

- 55 -

Programmers Guide for the X Test Suite

10. Appendix C - Included error assertions

The .ER keyword is described in the section entitled "Included errors - .ER".

This appendix gives the names the files which are included when this keyword is used
with the supported arguments, and shows the text of the assertions in those files.

All the files from which included tests are stored are located in the directory
$TET_ROOT/xtest/lib/error.

The names of the files which are included, and the text of the assertion contained in the
file, are specified in the following list:

Access grab
File included: EAcc1.mc
Assertion text:

When an attempt to grab a key/button combination already

grabbed by another client is made, then a BadAccess error

occurs.

Access colormap-free
File included: EAcc2.mc
Assertion text:

When an attempt to free a colormap entry not allocated by

the client is made, then a BadAccess error occurs.

Access colormap-store
File included: EAcc3.mc
Assertion text:

When an attempt to store into a read-only or an unallocated

colormap entry is made, then a BadAccess error occurs.

Access acl
File included: EAcc4.mc
Assertion text:

When an attempt is made to modify the access control list

from a client that is not authorised in a server-dependent

way to do so, then a BadAccess error occurs.

Access select
File included: EAcc5.mc
Assertion text:

When an attempt to select an event type is made, which at

most one client can select, and another client has already

selected it then a BadAccess error occurs.

Alloc
File included: EAll.mc
Assertion text:

When the server fails to allocate a required resource, then

a BadAlloc error occurs.

Atom [ARG1] [ARG2] ...
File included: EAto.mc
Assertion text:

- 56 -

Programmers Guide for the X Test Suite

When an atom argument does not name a valid Atom [, ARG1] [or

ARG2], then a BadAtom error occurs.

Color
File included: ECol.mc
Assertion text:

When a colourmap argument does not name a valid colourmap,

then a BadColor error occurs.

Cursor [ARG1] [ARG2] ...
File included: ECur.mc
Assertion text:

When a cursor argument does not name a valid Cursor [, ARG1] [or

ARG2], then a BadCursor error occurs.

Drawable [ARG1] [ARG2] ...
File included: EDra.mc
Assertion text:

When a drawable argument does not name a valid Drawable,

[ARG1] [or ARG2], then a BadDrawable error occurs.

Font bad-font
File included: EFon1.mc
Assertion text:

When a font argument does not name a valid font, then a

BadFont error occurs.

Font bad-fontable
File included: EFon2.mc
Assertion text:

When the font argument does not name a valid GContext or

font resource, then a BadFont error occurs.

GC
File included: EGC.mc
Assertion text:

When the GC argument does not name a defined GC, then a

BadGC error occurs.

Match inputonly
File included: EMat1.mc
Assertion text:

When a drawable argument is an InputOnly window then a

BadMatch error occurs.

Match gc-drawable-depth
File included: EMat2.mc
Assertion text:

When the graphics context and the drawable do not have the

same depth, then a BadMatch error occurs.

Match gc-drawable-screen
File included: EMat3.mc
Assertion text:

- 57 -

Programmers Guide for the X Test Suite

When the graphics context and the drawable were not created

for the same root, then a BadMatch error occurs.

Match wininputonly
File included: EMat4.mc
Assertion text:

When the window argument is an InputOnly window then a

BadMatch error occurs.

Name font
File included: ENam1.mc
Assertion text:

When the specified font does not exist, then a BadName error

occurs.

Name colour
File included: ENam2.mc
Assertion text:

When the specified colour does not exist, then a BadName

error occurs.

Pixmap [ARG1] [ARG2] ...
File included: EPix.mc
Assertion text:

When a pixmap argument does not name a valid Pixmap [, ARG1] [or

ARG2], then a BadPixmap error occurs.

Value ARG1 VAL1 [VAL2] ...
File included: EVal.mc †
Assertion text:

When the value of ARG1 is other than VAL1 [or VAL2], then a

BadValue error occurs.

† - the assertion text is not in the included file, but is inserted directly by mc.

Value ARG1 mask VAL1 [VAL2] ...
File included: EVal.mc †
Assertion text:

When the value of ARG1 is not a bitwise combination of VAL1

[or VAL2], then a BadValue error occurs.

† - the assertion text is not in the included file, but is inserted directly by mc.

Window [ARG1] [ARG2] ...
File included: EWin.mc
Assertion text:

When a window argument does not name a valid Window [, ARG1] [or

ARG2], then a BadWindow error occurs.

- 58 -

Programmers Guide for the X Test Suite

11. Appendix D - mc utility

Usage

mc [-a a_list] [-o <output-file>] [-l] [-m] [-s] [-p] [<input-file>]

The mc utility outputs a C source file containing tests specified in the input file <input-
file>, which must be a dot-m file which has the format specified in the section entitled
"Source file syntax".

If no <input-file> is specified, the input is taken from standard input. Multiple
input files can be processed by the utility, but the overall syntax must still conform to that
defined in the section entitled "Source file syntax". A consequence of this is that you
cannot specify another title section for a different function and expect to output tests for
more than one function simultaneously. Limited diagnostics are given if the file does not
have the required syntax. By default, the C source file is written to the standard output
stream.

More details of the formats of the C source files produced by mc are given in the section
entitled "Source file formats".

Options

-a a_list
This permits the specification of a list of assertions of the form
n1-m1,n2-m2,... to be output. Test code will only be output corresponding to
the tests in the specified ranges.

-o output-file
This sends the output to the file <output-file> instead of the standard output
stream.

-l
This option outputs a C source file containing tests with modified startup code
which allows the source code to be compiled and linked into a space-saving
executable file. The format of these files is described in the section entitled "C files
for linked executable - link.c".

-m
This option outputs a C source file containing tests for the macro version of the
function specified in the title section of the dot-m file. The format of these files is
described in the section entitled "C files for standalone executable in macro tests -
MTest.c".

The macro name is set to the <macroname> argument of the >>SET macro
option - if there is no >>SET macro option in the file, or no argument specified, the
default is the function argument in the >>TITLE keyword, with the leading
letter ‘X’ removed.

-s
This option outputs a test strategy from the dot-m file as a C source code comment
block between the assertion and the code. The test strategy is derived from the
corresponding strategy section in the dot-m file.

- 59 -

Programmers Guide for the X Test Suite

-p
This causes additional output including indicators of line number in the original
dot-m file (where possible). This means that any diagnostics produced by cc(1) or
lint(1) will refer to the line numbers in the original dot-m file rather than the C
source file.

- 60 -

Programmers Guide for the X Test Suite

12. Appendix E - mmkf utility

Usage

mmkf [-o <output-file>] [-s sections] [<input_file>]

The mmkf utility outputs a Makefile corresponding to the specified input file <input-
file>, which must be a dot-m file which has the format specified in the section entitled
"Source file syntax". The Makefile can build all the C source files that can be output by
mc from the input file <input-file>.

If no <input-file> is specified, the input is taken from standard input. Multiple
input files can be processed by the utility, but the overall syntax must still conform to that
defined in the section entitled "Source file syntax". A consequence of this is that you
cannot specify another title section for a different function and expect to output Makefiles
for more than one function simultaneously. Limited diagnostics are given if the file does
not have the required syntax. By default, the Makefile is written to the standard output
stream.

More details of the formats of the Makefiles produced by mmkf are given in the sub-
section entitled "Makefile" in the section entitled "Source file formats".

Options

-o output-file
This sends the output to the file <output-file> instead of the standard output
stream.

-s sections
This option enables output of certain optional sections of the Makefile. By default,
output of all these sections is enabled. There is no reason why you should need to
use this option with the current version of the X Test Suite.

The sections argument is a character string which may contain the key letters l,
L, m and p. If these characters are included, the specified sections of the Makefile
are then output.

Ke y Optional
letter section
l Targets for linked executable
L Targets for libraries
m Targets for linting and cleaning
p Targets for building known good image files

- 61 -

Programmers Guide for the X Test Suite

13. Appendix F - ma utility

Usage

ma [-a a_list] [-o <output-file>] [-h] [-s] [-p] [-m] [<input-file>]

The ma utility outputs a file containing a list of assertions in nroff(1) format (requiring no
macros other than those supplied in file maheader.mc). The assertions are specified in
the input file <input-file>, which must be a dot-m file which has the format
specified in the section entitled "Source file syntax".

If no <input-file> is specified, the input is taken from standard input. Multiple
input files can be processed by the utility, but the overall syntax must still conform to that
defined in the section entitled "Source file syntax". A consequence of this is that you
cannot specify another title section for a different function and expect to output assertions
for more than one function simultaneously. Limited diagnostics are given if the file does
not have the required syntax. By default, the assertion list is written to the standard output
stream.

More details of the format of the assertion list produced by ma are given in the sub-
section entitled "Formatting assertions" in the section entitled "Source file formats".

Options

-a a_list
This permits the specification of a list of assertions of the form
n1-m1,n2-m2,... to be output. Assertions will only be output corresponding
to the tests in the specified ranges.

-o output-file
This sends the output to the file <output-file> instead of the standard output
stream.

-h
The macros required for formatting the assertions are included at the start of the
output stream. These are copied from the file maheader.mc.

By default, the macros are not copied to the output stream.

-s
If this option is specified, and the -h option is specified, the line

.so head.t

will be output at the start of the output stream.

This option is not intended for general use - it was used when distributing
assertions in compact form for external review.

-p
The macros .NS and .NE will be output before and after each line in the dot-m file
which is a comment (commencing with >>#). By default, dot-m file comments are
not output. The macros .NS and .NE are defined in maheader.mc; they cause
the dot-m file comment lines to be printed in italic font by nroff(1).

This option is not intended for general use - it was used when reviewing assertions
before delivery.

- 62 -

Programmers Guide for the X Test Suite

-m
This option outputs assertions for the macro version of the function specified in the
title section of the dot-m file.

The macro name is set to the <macroname> argument of the >>SET macro
option - if there is no >>SET macro option in the file, or no argument specified, the
default is the function argument in the >>TITLE keyword, with the leading
letter ‘X’ removed.

CONTENTS

1. Introduction ... 1

2. Purpose of this guide ... 1

3. Contents of this guide ... 1
3.1 Typographical conventions used in this document 2

4. Source file syntax .. 3
4.1 Title section - >>TITLE ... 4
4.2 Make section - >>MAKE .. 5
4.3 Additional source files - >>CFILES .. 5
4.4 Extern section - >>EXTERN ... 6
4.5 Assertion section - >>ASSERTION .. 6
4.6 Strategy section - >>STRATEGY .. 8
4.7 Code section - >>CODE .. 9
4.8 Included section - >>INCLUDE .. 9
4.9 Included errors - .ER .. 11
4.10 Set options - >>SET ... 12
4.11 Comment lines - >># ... 13

5. Source file formats .. 14
5.1 C files for standalone executable - Test.c .. 14
5.2 C files for standalone executable in macro tests - MTest.c 20
5.3 C files for linked executable - link.c ... 20
5.4 C files for linked executable in macro tests - mlink.c 22
5.5 Makefile ... 22
5.6 Formatting assertions ... 28

6. Source file structure .. 30
6.1 Structure of the Xlib tests .. 30
6.2 Structure of the X Protocol tests .. 37

7. Source file libraries ... 43
7.1 The X Test Suite library ... 43
7.2 The X Protocol library ... 50
7.3 The X test fonts library .. 53

8. Appendix A - reason codes for extended assertions ... 54

9. Appendix B - commands for fonts and symbols in assertions 55

10. Appendix C - Included error assertions .. 56

11. Appendix D - mc utility .. 59

12. Appendix E - mmkf utility .. 61

13. Appendix F - ma utility ... 62

i

