

OpenGL-ES State Tracker Status

Brian Paul

Nov 13, 2009

Virtual Machine Group

- * At Tungsten Graphics, Bob Ellison and Brian Paul implemented OpenGL ES 1.1 and 2.0 state trackers for Mesa/Gallium in 2008.
- * There were two possible implementation paths:
 - 1. Write new state trackers from scratch, directly interfacing with Gallium.
 - 2. Re-use a subset of Mesa plus the Mesa/Gallium state tracker/driver.

We went with option 2.

* Despite OpenGL ES 1 and ES 2 being small subsets of OpenGL 2.1, there's still a lot of common code. For example: state management (rasterization, blending, Z, stencil), vertex array/buffer drawing commands, texture objects, GLSL compiler, etc.)

Changes in Mesa to support ES 1.1 and ES 2.0:

- * Repartitioned some core Mesa code to make it more modular. For example, separate glTexGen() functions into a separate file which is omitted from the ES builds.
- * Made assorted changes for OpenGL ES:
 - * Point size arrays
 - * GL_BYTE vertex arrays
- * Added some ES extensions like GL_OES_query_matrix, GL_OES_draw_texture, GL_OES_compressed_paletted_texture, etc.
 - * GLSL changes, such as precision qualifiers
 - * Enable Point Sprite mode by default
 - * Different default value for buffer mapping state
 - * Restricted parameters for glRenderbufferStorage(), etc.
- * Very few changes to the Mesa/Gallium state tracker.

Modified the build to omit the non-ES Mesa source files:

- * Created src/gallium/state-trackers/es/ with es1/ and es2 subdirs.
- * Symlink the re-used Mesa sources into those directories and build there.
- * Produce *libGLESv1_CM.so* and *libGLESv2.so* libraries
- * Since then, Chia-I Wu has been reworking OpenGL ES support. See the opengl-es-v2 branch in Mesa git.

EGL

- * EGL is a window system interface for creating rendering contexts and binding them to drawing surfaces, similar to GLX, but without the window-system specifics of GLX.
- * EGL may be used with OpenGL, OpenGL ES, OpenVG, etc.
- * Mesa's implementation of EGL is very modular and flexible. More flexible than GL X/ libGL.
- * libEGL.so does the following (see src/egl/main/):
 - * Implements the egl API functions like eglCreateContext() and eglSwapBuffers().
 - * Handles basic EGL surface, context, screen management.
 - * Device driver loading.
- * An "EGL device driver" may either be a real device driver or a "shim" that in-turn loads other drivers.

EGL continued:

* Example shim library: egl_glx.so is loaded by libEGL and it, in turn, loads a conventional DRI/GLX driver. Requires an X server plus GLX.

Alternately, full EGL drivers are assembled from building blocks:

- * Example hardware driver:
 - 1. A gallium driver, such as libi915.a for the Intel 915/945 GPU
 - 2. A winsys, such as libinteldrm.a
 - 3. A state tracker, such as libegldrm.a (full-screen, X-less EGL) Combine the building blocks to create an EGL driver: EGL_i915.so
- * Example software driver:
 - 1. A software gallium driver such as softpipe (or LLVMpipe or cell)
 - 2. A winsys such as sw_winsys (software-based buffers and fences)
 - 3. A state tracker, such as egl_xlib (render into X windows) Combine the building blocks to create egl_softpipe.so

