systemd-analyze — Analyze and debug system manager
systemd-analyze
[OPTIONS...] [time]
systemd-analyze
[OPTIONS...] blame
systemd-analyze
[OPTIONS...] critical-chain [UNIT
...]
systemd-analyze
[OPTIONS...] dump
systemd-analyze
[OPTIONS...] plot [>file.svg]
systemd-analyze
[OPTIONS...] dot [PATTERN
...] [>file.dot]
systemd-analyze
[OPTIONS...] unit-paths
systemd-analyze
[OPTIONS...] exit-status [STATUS
...]
systemd-analyze
[OPTIONS...] capability [CAPABILITY
...]
systemd-analyze
[OPTIONS...] condition CONDITION
…
systemd-analyze
[OPTIONS...] syscall-filter [SET
…]
systemd-analyze
[OPTIONS...] calendar SPEC
...
systemd-analyze
[OPTIONS...] timestamp TIMESTAMP
...
systemd-analyze
[OPTIONS...] timespan SPAN
...
systemd-analyze
[OPTIONS...] cat-config NAME
|PATH
...
systemd-analyze
[OPTIONS...] verify [FILE
...]
systemd-analyze
[OPTIONS...] security UNIT
...
systemd-analyze may be used to determine system boot-up performance statistics and retrieve other state and tracing information from the system and service manager, and to verify the correctness of unit files. It is also used to access special functions useful for advanced system manager debugging.
If no command is passed, systemd-analyze time is implied.
This command prints the time spent in the kernel before userspace has been reached, the time spent in the initial RAM disk (initrd) before normal system userspace has been reached, and the time normal system userspace took to initialize. Note that these measurements simply measure the time passed up to the point where all system services have been spawned, but not necessarily until they fully finished initialization or the disk is idle.
Example 1. Show how long the boot took
# in a container $ systemd-analyze time Startup finished in 296ms (userspace) multi-user.target reached after 275ms in userspace # on a real machine $ systemd-analyze time Startup finished in 2.584s (kernel) + 19.176s (initrd) + 47.847s (userspace) = 1min 9.608s multi-user.target reached after 47.820s in userspace
This command prints a list of all running units, ordered by the time they took to initialize.
This information may be used to optimize boot-up times. Note that the output might be misleading as the
initialization of one service might be slow simply because it waits for the initialization of another
service to complete. Also note: systemd-analyze blame doesn't display results for
services with Type=simple
, because systemd considers such services to be started
immediately, hence no measurement of the initialization delays can be done. Also note that this command
only shows the time units took for starting up, it does not show how long unit jobs spent in the
execution queue. In particular it shows the time units spent in "activating
" state,
which is not defined for units such as device units that transition directly from
"inactive
" to "active
". This command hence gives an impression of the
performance of program code, but cannot accurately reflect latency introduced by waiting for
hardware and similar events.
Example 2. Show which units took the most time during boot
$ systemd-analyze blame 32.875s pmlogger.service 20.905s systemd-networkd-wait-online.service 13.299s dev-vda1.device ... 23ms sysroot.mount 11ms initrd-udevadm-cleanup-db.service 3ms sys-kernel-config.mount
UNIT
...]¶This command prints a tree of the time-critical chain of units (for each of the specified
UNIT
s or for the default target otherwise). The time after the unit is
active or started is printed after the "@" character. The time the unit takes to start is printed after
the "+" character. Note that the output might be misleading as the initialization of services might
depend on socket activation and because of the parallel execution of units. Also, similar to the
blame command, this only takes into account the time units spent in
"activating
" state, and hence does not cover units that never went through an
"activating
" state (such as device units that transition directly from
"inactive
" to "active
"). Moreover it does not show information on
jobs (and in particular not jobs that timed out).
Example 3. systemd-analyze critical-chain
$ systemd-analyze critical-chain multi-user.target @47.820s └─pmie.service @35.968s +548ms └─pmcd.service @33.715s +2.247s └─network-online.target @33.712s └─systemd-networkd-wait-online.service @12.804s +20.905s └─systemd-networkd.service @11.109s +1.690s └─systemd-udevd.service @9.201s +1.904s └─systemd-tmpfiles-setup-dev.service @7.306s +1.776s └─kmod-static-nodes.service @6.976s +177ms └─systemd-journald.socket └─system.slice └─-.slice
This command outputs a (usually very long) human-readable serialization of the complete server state. Its format is subject to change without notice and should not be parsed by applications.
Example 4. Show the internal state of user manager
$ systemd-analyze --user dump Timestamp userspace: Thu 2019-03-14 23:28:07 CET Timestamp finish: Thu 2019-03-14 23:28:07 CET Timestamp generators-start: Thu 2019-03-14 23:28:07 CET Timestamp generators-finish: Thu 2019-03-14 23:28:07 CET Timestamp units-load-start: Thu 2019-03-14 23:28:07 CET Timestamp units-load-finish: Thu 2019-03-14 23:28:07 CET -> Unit proc-timer_list.mount: Description: /proc/timer_list ... -> Unit default.target: Description: Main user target ...
This command prints an SVG graphic detailing which system services have been started at what time, highlighting the time they spent on initialization.
pattern
...]¶This command generates textual dependency graph description in dot format for further processing
with the GraphViz
dot(1)
tool. Use a command line like systemd-analyze dot | dot -Tsvg >systemd.svg to
generate a graphical dependency tree. Unless --order
or --require
is
passed, the generated graph will show both ordering and requirement dependencies. Optional pattern
globbing style specifications (e.g. *.target
) may be given at the end. A unit
dependency is included in the graph if any of these patterns match either the origin or destination
node.
Example 6. Plot all dependencies of any unit whose name starts with "avahi-daemon
"
$ systemd-analyze dot 'avahi-daemon.*' | dot -Tsvg >avahi.svg $ eog avahi.svg
Example 7. Plot the dependencies between all known target units
$ systemd-analyze dot --to-pattern='*.target' --from-pattern='*.target' \ | dot -Tsvg >targets.svg $ eog targets.svg
This command outputs a list of all directories from which unit files, .d
overrides, and .wants
, .requires
symlinks may be
loaded. Combine with --user
to retrieve the list for the user manager instance, and
--global
for the global configuration of user manager instances.
Example 8. Show all paths for generated units
$ systemd-analyze unit-paths | grep '^/run' /run/systemd/system.control /run/systemd/transient /run/systemd/generator.early /run/systemd/system /run/systemd/system.attached /run/systemd/generator /run/systemd/generator.late
Note that this verb prints the list that is compiled into systemd-analyze itself, and does not communicate with the running manager. Use
systemctl [--user] [--global] show -p UnitPath --value
to retrieve the actual list that the manager uses, with any empty directories omitted.
STATUS
...]¶This command prints a list of exit statuses along with their "class", i.e. the source of the
definition (one of "glibc
", "systemd
", "LSB
", or
"BSD
"), see the Process Exit Codes section in
systemd.exec(5).
If no additional arguments are specified, all known statuses are are shown. Otherwise, only the
definitions for the specified codes are shown.
Example 9. Show some example exit status names
$ systemd-analyze exit-status 0 1 {63..65} NAME STATUS CLASS SUCCESS 0 glibc FAILURE 1 glibc - 63 - USAGE 64 BSD DATAERR 65 BSD
CAPABILITY
...]¶This command prints a list of Linux capabilities along with their numeric IDs. See capabilities(7)
for details. If no argument is specified the full list of capabilities known to the service manager and
the kernel is shown. Capabilities defined by the kernel but not known to the service manager are shown
as "cap_???
". Optionally, if arguments are specified they may refer to specific
cabilities by name or numeric ID, in which case only the indicated capabilities are shown in the
table.
Example 10. Show some example capability names
$ systemd-analyze capability 0 1 {30..32} NAME NUMBER cap_chown 0 cap_dac_override 1 cap_audit_control 30 cap_setfcap 31 cap_mac_override 32
CONDITION
...¶This command will evaluate Condition*=...
and
Assert*=...
assignments, and print their values, and
the resulting value of the combined condition set. See
systemd.unit(5)
for a list of available conditions and asserts.
Example 11. Evaluate conditions that check kernel versions
$ systemd-analyze condition 'ConditionKernelVersion = ! <4.0' \ 'ConditionKernelVersion = >=5.1' \ 'ConditionACPower=|false' \ 'ConditionArchitecture=|!arm' \ 'AssertPathExists=/etc/os-release' test.service: AssertPathExists=/etc/os-release succeeded. Asserts succeeded. test.service: ConditionArchitecture=|!arm succeeded. test.service: ConditionACPower=|false failed. test.service: ConditionKernelVersion=>=5.1 succeeded. test.service: ConditionKernelVersion=!<4.0 succeeded. Conditions succeeded.
SET
...]¶This command will list system calls contained in the specified system call set
SET
, or all known sets if no sets are specified. Argument
SET
must include the "@
" prefix.
EXPRESSION
...¶This command will parse and normalize repetitive calendar time events, and will calculate when
they elapse next. This takes the same input as the OnCalendar=
setting in
systemd.timer(5),
following the syntax described in
systemd.time(7). By
default, only the next time the calendar expression will elapse is shown; use
--iterations=
to show the specified number of next times the expression
elapses. Each time the expression elapses forms a timestamp, see the timestamp
verb below.
Example 12. Show leap days in the near future
$ systemd-analyze calendar --iterations=5 '*-2-29 0:0:0' Original form: *-2-29 0:0:0 Normalized form: *-02-29 00:00:00 Next elapse: Sat 2020-02-29 00:00:00 UTC From now: 11 months 15 days left Iter. #2: Thu 2024-02-29 00:00:00 UTC From now: 4 years 11 months left Iter. #3: Tue 2028-02-29 00:00:00 UTC From now: 8 years 11 months left Iter. #4: Sun 2032-02-29 00:00:00 UTC From now: 12 years 11 months left Iter. #5: Fri 2036-02-29 00:00:00 UTC From now: 16 years 11 months left
TIMESTAMP
...¶This command parses a timestamp (i.e. a single point in time) and outputs the normalized form and the difference between this timestamp and now. The timestamp should adhere to the syntax documented in systemd.time(7), section "PARSING TIMESTAMPS".
Example 13. Show parsing of timestamps
$ systemd-analyze timestamp yesterday now tomorrow Original form: yesterday Normalized form: Mon 2019-05-20 00:00:00 CEST (in UTC): Sun 2019-05-19 22:00:00 UTC UNIX seconds: @15583032000 From now: 1 day 9h ago Original form: now Normalized form: Tue 2019-05-21 09:48:39 CEST (in UTC): Tue 2019-05-21 07:48:39 UTC UNIX seconds: @1558424919.659757 From now: 43us ago Original form: tomorrow Normalized form: Wed 2019-05-22 00:00:00 CEST (in UTC): Tue 2019-05-21 22:00:00 UTC UNIX seconds: @15584760000 From now: 14h left
EXPRESSION
...¶This command parses a time span (i.e. a difference between two timestamps) and outputs the normalized form and the equivalent value in microseconds. The time span should adhere to the syntax documented in systemd.time(7), section "PARSING TIME SPANS". Values without units are parsed as seconds.
Example 14. Show parsing of timespans
$ systemd-analyze timespan 1s 300s '1year 0.000001s' Original: 1s μs: 1000000 Human: 1s Original: 300s μs: 300000000 Human: 5min Original: 1year 0.000001s μs: 31557600000001 Human: 1y 1us
NAME
|PATH
...¶This command is similar to systemctl cat, but operates on config files. It
will copy the contents of a config file and any drop-ins to standard output, using the usual systemd
set of directories and rules for precedence. Each argument must be either an absolute path including
the prefix (such as /etc/systemd/logind.conf
or
/usr/lib/systemd/logind.conf
), or a name relative to the prefix (such as
systemd/logind.conf
).
Example 15. Showing logind configuration
$ systemd-analyze cat-config systemd/logind.conf # /etc/systemd/logind.conf ... [Login] NAutoVTs=8 ... # /usr/lib/systemd/logind.conf.d/20-test.conf ... some override from another package # /etc/systemd/logind.conf.d/50-override.conf ... some administrator override
FILE
...¶This command will load unit files and print warnings if any errors are detected. Files specified
on the command line will be loaded, but also any other units referenced by them. The full unit search
path is formed by combining the directories for all command line arguments, and the usual unit load
paths. The variable $SYSTEMD_UNIT_PATH
is supported, and may be used to replace or
augment the compiled in set of unit load paths; see
systemd.unit(5). All
units files present in the directories containing the command line arguments will be used in preference
to the other paths.
The following errors are currently detected:
unknown sections and directives,
missing dependencies which are required to start the given unit,
man pages listed in Documentation=
which are not found in the
system,
commands listed in ExecStart=
and similar which are not found in
the system or not executable.
Example 16. Misspelt directives
$ cat ./user.slice [Unit] WhatIsThis=11 Documentation=man:nosuchfile(1) Requires=different.service [Service] Description=x $ systemd-analyze verify ./user.slice [./user.slice:9] Unknown lvalue 'WhatIsThis' in section 'Unit' [./user.slice:13] Unknown section 'Service'. Ignoring. Error: org.freedesktop.systemd1.LoadFailed: Unit different.service failed to load: No such file or directory. Failed to create user.slice/start: Invalid argument user.slice: man nosuchfile(1) command failed with code 16
Example 17. Missing service units
$ tail ./a.socket ./b.socket ==> ./a.socket <== [Socket] ListenStream=100 ==> ./b.socket <== [Socket] ListenStream=100 Accept=yes $ systemd-analyze verify ./a.socket ./b.socket Service a.service not loaded, a.socket cannot be started. Service b@0.service not loaded, b.socket cannot be started.
UNIT
...]¶This command analyzes the security and sandboxing settings of one or more specified service units. If at least one unit name is specified the security settings of the specified service units are inspected and a detailed analysis is shown. If no unit name is specified, all currently loaded, long-running service units are inspected and a terse table with results shown. The command checks for various security-related service settings, assigning each a numeric "exposure level" value, depending on how important a setting is. It then calculates an overall exposure level for the whole unit, which is an estimation in the range 0.0…10.0 indicating how exposed a service is security-wise. High exposure levels indicate very little applied sandboxing. Low exposure levels indicate tight sandboxing and strongest security restrictions. Note that this only analyzes the per-service security features systemd itself implements. This means that any additional security mechanisms applied by the service code itself are not accounted for. The exposure level determined this way should not be misunderstood: a high exposure level neither means that there is no effective sandboxing applied by the service code itself, nor that the service is actually vulnerable to remote or local attacks. High exposure levels do indicate however that most likely the service might benefit from additional settings applied to them.
Please note that many of the security and sandboxing settings individually can be circumvented — unless combined with others. For example, if a service retains the privilege to establish or undo mount points many of the sandboxing options can be undone by the service code itself. Due to that is essential that each service uses the most comprehensive and strict sandboxing and security settings possible. The tool will take into account some of these combinations and relationships between the settings, but not all. Also note that the security and sandboxing settings analyzed here only apply to the operations executed by the service code itself. If a service has access to an IPC system (such as D-Bus) it might request operations from other services that are not subject to the same restrictions. Any comprehensive security and sandboxing analysis is hence incomplete if the IPC access policy is not validated too.
Example 18. Analyze systemd-logind.service
$ systemd-analyze security --no-pager systemd-logind.service NAME DESCRIPTION EXPOSURE ✗ PrivateNetwork= Service has access to the host's network 0.5 ✗ User=/DynamicUser= Service runs as root user 0.4 ✗ DeviceAllow= Service has no device ACL 0.2 ✓ IPAddressDeny= Service blocks all IP address ranges ... → Overall exposure level for systemd-logind.service: 4.1 OK 🙂
The following options are understood:
--system
¶Operates on the system systemd instance. This is the implied default.
--user
¶Operates on the user systemd instance.
--global
¶Operates on the system-wide configuration for user systemd instance.
--order
, --require
¶When used in conjunction with the
dot command (see above), selects which
dependencies are shown in the dependency graph. If
--order
is passed, only dependencies of type
After=
or Before=
are
shown. If --require
is passed, only
dependencies of type Requires=
,
Requisite=
,
Wants=
and Conflicts=
are shown. If neither is passed, this shows dependencies of
all these types.
--from-pattern=
, --to-pattern=
¶When used in conjunction with the dot command (see above), this selects which relationships are shown in the dependency graph. Both options require a glob(7) pattern as an argument, which will be matched against the left-hand and the right-hand, respectively, nodes of a relationship.
Each of these can be used more than once, in which case the unit name must match one of the values. When tests for both sides of the relation are present, a relation must pass both tests to be shown. When patterns are also specified as positional arguments, they must match at least one side of the relation. In other words, patterns specified with those two options will trim the list of edges matched by the positional arguments, if any are given, and fully determine the list of edges shown otherwise.
--fuzz=
timespan
¶When used in conjunction with the
critical-chain command (see above), also
show units, which finished timespan
earlier, than the latest unit in the same level. The unit of
timespan
is seconds unless
specified with a different unit, e.g.
"50ms".
--man=no
¶Do not invoke
man(1)
to verify the existence of man pages listed in Documentation=
.
--generators
¶Invoke unit generators, see systemd.generator(7). Some generators require root privileges. Under a normal user, running with generators enabled will generally result in some warnings.
--root=PATH
¶With cat-files, show config files underneath
the specified root path PATH
.
--iterations=NUMBER
¶When used with the calendar command, show the specified number of iterations the specified calendar expression will elapse next. Defaults to 1.
--base-time=TIMESTAMP
¶When used with the calendar command, show next iterations relative to the specified point in time. If not specified defaults to the current time.
-H
, --host=
¶Execute the operation remotely. Specify a hostname, or a
username and hostname separated by "@
", to
connect to. The hostname may optionally be suffixed by a
port ssh is listening on, separated by ":
", and then a
container name, separated by "/
", which
connects directly to a specific container on the specified
host. This will use SSH to talk to the remote machine manager
instance. Container names may be enumerated with
machinectl -H
HOST
. Put IPv6 addresses in brackets.
-M
, --machine=
¶Execute operation on a local container. Specify a container name to connect to.
-h
, --help
¶--version
¶--no-pager
¶Do not pipe output into a pager.
$SYSTEMD_PAGER
¶Pager to use when --no-pager
is not given; overrides
$PAGER
. If neither $SYSTEMD_PAGER
nor $PAGER
are set, a
set of well-known pager implementations are tried in turn, including
less(1) and
more(1), until one is found. If
no pager implementation is discovered no pager is invoked. Setting this environment variable to an empty string
or the value "cat
" is equivalent to passing --no-pager
.
$SYSTEMD_LESS
¶Override the options passed to less (by default
"FRSXMK
").
Users might want to change two options in particular:
See less(1) for more discussion.
$SYSTEMD_LESSCHARSET
¶Override the charset passed to less (by default "utf-8
", if
the invoking terminal is determined to be UTF-8 compatible).
$SYSTEMD_PAGERSECURE
¶Takes a boolean argument. When true, the "secure" mode of the pager is enabled; if
false, disabled. If $SYSTEMD_PAGERSECURE
is not set at all, secure mode is enabled
if the effective UID is not the same as the owner of the login session, see geteuid(2) and
sd_pid_get_owner_uid(3).
In secure mode, LESSSECURE=1
will be set when invoking the pager, and the pager shall
disable commands that open or create new files or start new subprocesses. When
$SYSTEMD_PAGERSECURE
is not set at all, pagers which are not known to implement
secure mode will not be used. (Currently only
less(1) implements
secure mode.)
Note: when commands are invoked with elevated privileges, for example under sudo(8) or
pkexec(1), care
must be taken to ensure that unintended interactive features are not enabled. "Secure" mode for the
pager may be enabled automatically as describe above. Setting SYSTEMD_PAGERSECURE=0
or not removing it from the inherited environment allows the user to invoke arbitrary commands. Note
that if the $SYSTEMD_PAGER
or $PAGER
variables are to be
honoured, $SYSTEMD_PAGERSECURE
must be set too. It might be reasonable to completely
disable the pager using --no-pager
instead.
$SYSTEMD_COLORS
¶The value must be a boolean. Controls whether colorized output should be
generated. This can be specified to override the decision that systemd makes based
on $TERM
and what the console is connected to.
$SYSTEMD_URLIFY
¶The value must be a boolean. Controls whether clickable links should be generated in
the output for terminal emulators supporting this. This can be specified to override the decision that
systemd makes based on $TERM
and other conditions.